Computational Micromagnetism

  • Authors
  • Andreas┬áProhl
Part of the Advances in Numerical Mathematics book series (ANUM)

Table of contents

  1. Front Matter
    Pages I-XVIII
  2. Numerical Stationary Micromagnetism

    1. Front Matter
      Pages 1-13
    2. Andreas Prohl
      Pages 15-41
    3. Andreas Prohl
      Pages 43-100
    4. Andreas Prohl
      Pages 101-117
  3. Numerical Nonstationary Micromagnetism

    1. Front Matter
      Pages 119-133
    2. Andreas Prohl
      Pages 135-196
    3. Andreas Prohl
      Pages 197-232
    4. Andreas Prohl
      Pages 233-285
    5. Andreas Prohl
      Pages 287-289
  4. Back Matter
    Pages 291-304

About this book

Introduction

Ferromagnetic materials are widely used as recording media.
Their magnetic patterns are described by the well-accepted model of Landau and Lifshitz. Over the last years, different strategies habe been developed to tackle the related non-convex minimization problem: direct minimization, convexification, and relaxation by using Young measures. Nonstationary effects are considered in the extended models of Landau, Lifshitz and Gilbert for (electrically conducting) ferromagnets.
The objective of this monograph is a numerical analysis of these models. Part I discusses convergence behavior of different finite element schemes for solving the stationary problem. Part II deals with numerical analyses of different penalization / projection strategies in nonstationary micromagnetism; it closes with a chapter on nematic liquid crystals to show applicability of these new methods to further applications.

Keywords

Direct Minimization Micromagnetism Nematic Liquid Crystals Numerical Nonstationary Numerical Stationary Relaxed Micromagnetism finite element method magnetic material magnetism model

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-663-09498-2
  • Copyright Information Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 2001
  • Publisher Name Vieweg+Teubner Verlag, Wiesbaden
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-519-00358-8
  • Online ISBN 978-3-663-09498-2
  • Series Print ISSN 1616-2994
  • About this book