New Trends in Intuitive Geometry

  • Gergely Ambrus
  • Imre Bárány
  • Károly J. Böröczky
  • Gábor  Fejes Tóth
  • János Pach

Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)

Table of contents

  1. Front Matter
    Pages i-x
  2. Alexander Barvinok
    Pages 1-23
  3. Károly Bezdek, Muhammad A. Khan
    Pages 25-47
  4. Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, Günter M. Ziegler
    Pages 49-64
  5. Frank de Zeeuw
    Pages 95-124
  6. Gábor Domokos, Gary W. Gibbons
    Pages 125-153
  7. Fernando Mário de Oliveira Filho, Frank Vallentin
    Pages 155-188
  8. Péter Hajnal, Endre Szemerédi
    Pages 189-199
  9. Rob Kusner, Wöden Kusner, Jeffrey C. Lagarias, Senya Shlosman
    Pages 219-277
  10. Emerson León, Günter M. Ziegler
    Pages 279-306
  11. Peter McMullen
    Pages 307-320
  12. Márton Naszódi
    Pages 335-358
  13. Micha Sharir, Noam Solomon
    Pages 359-383
  14. József Solymosi, Frank de Zeeuw
    Pages 385-405
  15. Konrad J. Swanepoel
    Pages 407-458
  16. Gergely Ambrus, Imre Bárány, Károly J. Böröczky, Gábor Fejes Tóth, János Pach
    Pages C1-C1

About this book


This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.


Discrete geometry combinatorial geometry packing and covering problems incidence geometry algebraic methods in discrete geometry

Editors and affiliations

  • Gergely Ambrus
    • 1
  • Imre Bárány
    • 2
  • Károly J. Böröczky
    • 3
  • Gábor  Fejes Tóth
    • 4
  • János Pach
    • 5
  1. 1.MTA Alfréd Rényi Institute of MathematicsBudapestHungary
  2. 2.MTA Alfréd Rényi Institute of MathematicsBudapestHungary
  3. 3.MTA Alfréd Rényi Institute of MathematicsBudapestHungary
  4. 4.MTA Alfréd Rényi Institute of MathematicsBudapestHungary
  5. 5.MTA Alfréd Rényi Institute of MathematicsBudapestHungary

Bibliographic information