Advertisement

Inverse Galois Theory

  • Gunter Malle
  • B. Heinrich Matzat

Part of the Springer Monographs in Mathematics book series (SMM)

Table of contents

  1. Front Matter
    Pages I-XV
  2. Gunter Malle, B. Heinrich Matzat
    Pages 1-88
  3. Gunter Malle, B. Heinrich Matzat
    Pages 89-176
  4. Gunter Malle, B. Heinrich Matzat
    Pages 177-261
  5. Gunter Malle, B. Heinrich Matzat
    Pages 263-360
  6. Gunter Malle, B. Heinrich Matzat
    Pages 361-401
  7. Back Matter
    Pages 403-436

About this book

Introduction

Inverse Galois Theory is concerned with the question of which finite groups occur as Galois Groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K and also the question about its finite epimorphic images, the so-called inverse problem of Galois theory. In all these areas important progress was made in the last few years. The aim of the book is to give a consistent and reasonably complete survey of these results, with the main emphasis on the rigidity method and its applications. Among others the monograph presents the most successful known existence theorems and construction methods for Galois extensions and solutions of embedding problems combined with a collection of the existing Galois realizations.

Keywords

Arithmetic fundamentals group Galois cohomology Galois theory braid groups embedding problems inverse Galois problem polynomials rigid analytic geometry rigidity of finite groups

Authors and affiliations

  • Gunter Malle
    • 1
  • B. Heinrich Matzat
    • 2
  1. 1.FB Mathematik/InformatikUniversität Gesamthochschule KasselKasselGermany
  2. 2.Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergHeidelbergGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-12123-8
  • Copyright Information Springer-Verlag Berlin Heidelberg 1999
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-08311-2
  • Online ISBN 978-3-662-12123-8
  • Series Print ISSN 1439-7382
  • Buy this book on publisher's site