Surgery on Contact 3-Manifolds and Stein Surfaces

  • Burak Ozbagci
  • András I. Stipsicz
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 13)

Table of contents

  1. Front Matter
    Pages i-9
  2. Burak Ozbagci, András I. Stipsicz
    Pages 11-24
  3. Burak Ozbagci, András I. Stipsicz
    Pages 25-48
  4. Burak Ozbagci, András I. Stipsicz
    Pages 49-62
  5. Burak Ozbagci, András I. Stipsicz
    Pages 63-84
  6. Burak Ozbagci, András I. Stipsicz
    Pages 85-98
  7. Burak Ozbagci, András I. Stipsicz
    Pages 99-109
  8. Burak Ozbagci, András I. Stipsicz
    Pages 111-120
  9. Burak Ozbagci, András I. Stipsicz
    Pages 121-130
  10. Burak Ozbagci, András I. Stipsicz
    Pages 131-153
  11. Burak Ozbagci, András I. Stipsicz
    Pages 155-178
  12. Burak Ozbagci, András I. Stipsicz
    Pages 179-200
  13. Burak Ozbagci, András I. Stipsicz
    Pages 201-222
  14. Burak Ozbagci, András I. Stipsicz
    Pages 223-233
  15. Burak Ozbagci, András I. Stipsicz
    Pages 235-254
  16. Burak Ozbagci, András I. Stipsicz
    Pages 255-268
  17. Back Matter
    Pages 269-282

About this book

Introduction

Surgery is the most effective way of constructing manifolds. This is
especially true in dimensions 3 and 4, where Kirby calculus provides a
method for manipulating surgery diagrams. The groundbreaking results
of Donaldson (on Lefschetz fibrations) and Giroux (on open book
decompositions) now allow one to incorporate analytic
structures into these diagrams: symplectic or Stein structures
in the 4-dimensional case, contact structures in the 3-dimensional
situation. This volume gives an introduction to the
surgery techniques adapted to these additional structures.
The necessary topological background on Lefschetz fibrations and open
book decompositions is developed in the book. Also included are
rapid introductions to the basics and applications of
Seiberg--Witten and Heegaard Floer theories.

 

Keywords

3-manifolds Contact Geometry Contact Surgery Stein Surfaces Topology mapping

Authors and affiliations

  • Burak Ozbagci
    • 1
  • András I. Stipsicz
    • 2
  1. 1.Koc UniversityIstanbulTurkey
  2. 2.Hungarian Academy of SciencesAlfréd Rényi Institute of MathematicsBudapestHungary

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-10167-4
  • Copyright Information Springer-Verlag Berlin Heidelberg 2004
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-06184-4
  • Online ISBN 978-3-662-10167-4
  • Series Print ISSN 1217-4696