Advertisement

Shock Focussing Effect in Medical Science and Sonoluminescence

  • Ramesh C. Srivastava
  • Dieter Leutloff
  • Kazuyoshi Takayama
  • Hans Grönig

Table of contents

About this book

Introduction

In 1942 Guderley investigated the behaviour of the typical parameters near the axis when he was studying the focusing of cylindrical shock waves by solving the partial differential equations using the similarity method. He pre­ dicted an infinitely large pressure and temperature at the axis of convergence. Since then many theoretical and experimental studies have been performed on shock focusing as an energy source for the generation of very high pressures and temperatures. Many experimental investigations confirmed the idea of Guderley that at the centre of convergence extremely high pressures and temperatures can be obtained. At the Technical University of Darmstadt we performed a numerical exper­ iment to investigate the shock-focusing phenomenon, and many test problems were solved using the Rusanov scheme. At the centre of convergence we ob­ tained extremely high pressures and temperatures. The results of these inves­ tigations were compared with the experimental work done at the Max Planck Institute for Fluid Dynamics Research in Gottingen. The three-dimensional time-dependent shock wave which was created by a centred gas volume under high pressure interacts with the plane walls of the cavity and leads to a focusing effect after the explosion. The symmetry-preserving character of the invari­ ant difference scheme under use was proved numerically by calculation over a long interval of time. A test run of our investigation was also made at the Institute of Computational Fluid Dynamics in Tokyo, Japan.

Keywords

Cavitation Bubbles Extracorporeal Shock Wave Lithotripsy Extracorporeal Shock Wave Pain Therapy Lithotripsy Optische Kohärenztomografie Shock Wave Sonoluminescence pain therapy

Editors and affiliations

  • Ramesh C. Srivastava
    • 1
  • Dieter Leutloff
    • 2
  • Kazuyoshi Takayama
    • 3
  • Hans Grönig
    • 4
  1. 1.Department of Mathematics and StatisticsGorakhpur UniversityGorakhpurIndia
  2. 2.Fachbereich 6, Mechanik/LaborTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Institute of Fluid CenterTohoku UniversitySendai 980Japan
  4. 4.StosswellenlaborRWTH AachenAachenGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-05161-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 2003
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-07636-7
  • Online ISBN 978-3-662-05161-0
  • Buy this book on publisher's site