Advertisement

Mathematical Visualization

Algorithms, Applications and Numerics

  • Hans-Christian Hege
  • Konrad Polthier

Table of contents

  1. Front Matter
    Pages I-XX
  2. Meshes, Multilevel Approximation, and Visualization

    1. Front Matter
      Pages 1-1
    2. Paolo Cignoni, Claudio Montani, Roberto Scopigno
      Pages 3-18
    3. Roberto Grosso, Thomas Ertl
      Pages 19-30
    4. Norbert Heußer, Martin Rumpf
      Pages 31-44
    5. Detlef Ruprecht, Heinrich Müller
      Pages 61-70
  3. Geometry and Numerics

    1. Front Matter
      Pages 71-71
    2. Georg Glaeser, Eduard Gröller
      Pages 89-106
    3. Karsten Große-Brauckmann, Robert B. Kusner, John M. Sullivan
      Pages 107-116
    4. Wolfgang Kühn
      Pages 125-134
    5. Konrad Polthier, Markus Schmies
      Pages 135-150
  4. Graphics Algorithms and Implementations

    1. Front Matter
      Pages 151-151
    2. Alfred Inselberg
      Pages 167-179
    3. Philipp Slusallek, Marc Stamminger, Hans-Peter Seidel
      Pages 181-194
    4. Ivan Sterling, Thomas Sterling
      Pages 195-206
  5. Geometric Visualization Techniques

    1. Front Matter
      Pages 221-221
    2. Ulrike Axen, Herbert Edelsbrunner
      Pages 223-236
    3. George Francis, John M. Sullivan, Chris Hartman
      Pages 237-255
    4. John C. Hart
      Pages 257-268
    5. René T. Rau, Daniel Weiskopf, Hanns Ruder
      Pages 269-279
  6. Vector Fields and Flow Visualization

    1. Front Matter
      Pages 293-293
    2. Hans-Christian Hege, Detlev Stalling
      Pages 295-314
    3. Helwig Löffelmann, Thomas Kučera, Eduard Gröller
      Pages 315-328
    4. Adriano Lopes, Ken Brodlie
      Pages 329-341
    5. Gerik Scheuermann, Hans Hagen, Heinz Krüger
      Pages 343-351
    6. Laurent Testard
      Pages 353-362
  7. Back Matter
    Pages 363-393

About this book

Introduction

Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization.
Originally, mathematical visualization started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications, and the subject has evolved to a discipline in its own right. The current volume is the quintessence of an international workshop in September 1997in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques. The sections of the book contain topics on Meshes in Numerics and Visualization, Applications in Geometry and Numerics, Graphics Algorithms and Implementations, Geometric Visualization Techniques, and Vectorfields and Flow Visualization. The book is the second in a series of publications on this subject. It offers the reader insight to latest research and developments in this fascinating new area.

Keywords

Computer Computergraphik Differentialgeometrie Numerische Mathematik Simulation Wissenschaftliche Visualisierung Wissenschaftliches Rechnen algorithms computer graphics differential geometry manifold modeling numerical mathematics optimization visualization

Editors and affiliations

  • Hans-Christian Hege
    • 1
  • Konrad Polthier
    • 2
  1. 1.Wissenschaftliche VisualisierungKonrad-Zuse-Zentrum für Informationstechnik BerlinBerlinGermany
  2. 2.Fachbereich 3, MathematikTechnische Universität BerlinBerlinGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-03567-2
  • Copyright Information Springer-Verlag Berlin Heidelberg 1998
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-08373-0
  • Online ISBN 978-3-662-03567-2
  • Buy this book on publisher's site