Advertisement

Parallel Algorithms in Computational Science

  • Dieter W. Heermann
  • Anthony N. Burkitt

Part of the Springer Series in Information Sciences book series (SSINF, volume 24)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Dieter W. Heermann, Anthony N. Burkitt
    Pages 1-4
  3. Dieter W. Heermann, Anthony N. Burkitt
    Pages 5-35
  4. Dieter W. Heermann, Anthony N. Burkitt
    Pages 37-42
  5. Dieter W. Heermann, Anthony N. Burkitt
    Pages 43-50
  6. Dieter W. Heermann, Anthony N. Burkitt
    Pages 51-70
  7. Dieter W. Heermann, Anthony N. Burkitt
    Pages 71-74
  8. Dieter W. Heermann, Anthony N. Burkitt
    Pages 75-104
  9. Dieter W. Heermann, Anthony N. Burkitt
    Pages 105-109
  10. Dieter W. Heermann, Anthony N. Burkitt
    Pages 111-147
  11. Back Matter
    Pages 149-183

About this book

Introduction

Our aim in this book is to present and enlarge upon those aspects of parallel computing that are needed by practitioners of computational science. Today al­ most all classical sciences, such as mathematics, physics, chemistry and biology, employ numerical methods to help gain insight into nature. In addition to the traditional numerical methods, such as matrix inversions and the like, a whole new field of computational techniques has come to assume central importance, namely the numerical simulation methods. These methods are much less fully developed than those which are usually taught in a standard numerical math­ ematics course. However, they form a whole new set of tools for research in the physical sciences and are applicable to a very wide range of problems. At the same time there have been not only enormous strides forward in the speed and capability of computers but also dramatic new developments in computer architecture, and particularly in parallel computers. These improvements offer exciting prospects for computer studies of physical systems, and it is the new techniques and methods connected with such computer simulations that we seek to present in this book, particularly in the light of the possibilities opened up by parallel computers. It is clearly not possible at this early stage to write a definitive book on simulation methods and parallel computing.

Keywords

Computational Physics Molecular Dynamics Monte Carlo Method Parallel Algorithms Parallel Computers algorithms

Editors and affiliations

  • Dieter W. Heermann
    • 1
  • Anthony N. Burkitt
    • 2
  1. 1.Institut für Theoretische Physik der Universität HeidelbergHeidelbergFed. Rep. of Germany
  2. 2.Theoretische Physik: FB8Bergische Universität - GHSWuppertal 1Fed. Rep. of Germany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-76265-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 1991
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-76267-3
  • Online ISBN 978-3-642-76265-9
  • Series Print ISSN 0720-678X
  • Buy this book on publisher's site