Geometric Measure Theory

  • Herbert Federer
  • B. Eckmann
  • B. L. van der Waerden

Part of the Classics in Mathematics book series (CLASSICS)

Table of contents

  1. Front Matter
    Pages I-XIV
  2. Herbert Federer
    Pages 1-7
  3. Herbert Federer
    Pages 8-49
  4. Herbert Federer
    Pages 50-206
  5. Herbert Federer
    Pages 207-340
  6. Herbert Federer
    Pages 341-512
  7. Herbert Federer
    Pages 513-654
  8. Back Matter
    Pages 655-676

About this book


From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst."
Bulletin of the London Mathematical Society 


Geometric measure theory Lebesgue integration Multiplication Tensor calculus calculus of variations classical analysis classical geometry form functional homology integration integration theory measure theory sets

Authors and affiliations

  • Herbert Federer
    • 1
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA

Editors and affiliations

  • B. Eckmann
    • 1
  • B. L. van der Waerden
    • 2
  1. 1.Eidgenössische Technische HochschuleZürichSwitzerland
  2. 2.Mathematisches Institut der UniversitätZürichSwitzerland

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 1996
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-60656-7
  • Online ISBN 978-3-642-62010-2
  • Series Print ISSN 1431-0821
  • Buy this book on publisher's site