Advertisement

Dynamics Reported

Expositions in Dynamical Systems

  • C. K. R. T. Jones
  • U. Kirchgraber
  • H. O. Walther

Part of the Dynamics Reported book series (DYNAMICS, volume 4)

Table of contents

  1. Front Matter
    Pages I-IX
  2. Alessandra Celletti, Luigi Chierchia
    Pages 60-129
  3. Carlangelo Liverani, Maciej P. Wojtkowski
    Pages 130-202
  4. Thomas Wanner
    Pages 203-268

About this book

Introduction

DYNAMICS REPORTED reports on recent developments in dynamical systems. Dynamical systems of course originated from ordinary differential equations. Today, dynamical systems cover a much larger area, including dynamical processes described by functional and integral equations, by partial and stochastic differential equations, etc. Dynamical systems have involved remarkably in recent years. A wealth of new phenomena, new ideas and new techniques are proving to be of considerable interest to scientists in rather different fields. It is not surprising that thousands of publications on the theory itself and on its various applications are appearing DYNAMICS REPORTED presents carefully written articles on major subjects in dy­ namical systems and their applications, addressed not only to specialists but also to a broader range of readers including graduate students. Topics are advanced, while detailed exposition of ideas, restriction to typical results - rather than the most general one- and, last but not least, lucid proofs help to gain the utmost degree of clarity. It is hoped, that DYNAMICS REPORTED will be useful for those entering the field and will stimulate an exchange of ideas among those working in dynamical systems Summer 1991 Christopher K. R. T Jones Drs Kirchgraber Hans-Otto Walther Managing Editors Table of Contents The "Spectral" Decomposition for One-Dimensional Maps Alexander M. Blokh Introduction and Main Results 1. 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 0. 1. 1. Historical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2. A Short Description of the Approach Presented . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 3. Solenoidal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Basic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 4.

Keywords

Ergodizität Hamiltonian Hypothese Parameter Power Rang analytic function convergence dynamical system dynamical systems ergodicity hamiltonian system invariant manifold random dynamical system

Editors and affiliations

  • C. K. R. T. Jones
    • 1
  • U. Kirchgraber
    • 2
  • H. O. Walther
    • 3
  1. 1.Division of Applied MathematicsBrown UniversityProvidence, Rhode IslandUSA
  2. 2.Mathematics Swiss Federal Institute of Technology (ETH)ZürichSwitzerland
  3. 3.Mathematics Ludwig-Maximilians UniversityMunichGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-61215-2
  • Copyright Information Springer-Verlag Berlin Heidelberg 1995
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-64748-2
  • Online ISBN 978-3-642-61215-2
  • Series Print ISSN 0936-6040
  • Buy this book on publisher's site