Advertisement

MuPAD Tutorial

  • Christopher Creutzig
  • Walter Oevel

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Christopher Creutzig, Walter Oevel
    Pages 1-5
  3. Christopher Creutzig, Walter Oevel
    Pages 7-33
  4. Christopher Creutzig, Walter Oevel
    Pages 35-39
  5. Christopher Creutzig, Walter Oevel
    Pages 41-124
  6. Christopher Creutzig, Walter Oevel
    Pages 125-134
  7. Christopher Creutzig, Walter Oevel
    Pages 135-139
  8. Christopher Creutzig, Walter Oevel
    Pages 141-145
  9. Christopher Creutzig, Walter Oevel
    Pages 147-157
  10. Christopher Creutzig, Walter Oevel
    Pages 159-178
  11. Christopher Creutzig, Walter Oevel
    Pages 179-184
  12. Christopher Creutzig, Walter Oevel
    Pages 185-268
  13. Christopher Creutzig, Walter Oevel
    Pages 269-271
  14. Christopher Creutzig, Walter Oevel
    Pages 273-278
  15. Christopher Creutzig, Walter Oevel
    Pages 279-284
  16. Christopher Creutzig, Walter Oevel
    Pages 285-289
  17. Christopher Creutzig, Walter Oevel
    Pages 291-294
  18. Christopher Creutzig, Walter Oevel
    Pages 295-300
  19. Christopher Creutzig, Walter Oevel
    Pages 301-333
  20. Back Matter
    Pages 335-412

About this book

Introduction

This book explains the basic use of the software package called MuPAD and gives an insight into the power of the system. MuPAD is a so-called com­ puter algebra system, which is developed mainly by Sciface Software and the MuPAD Research Group of the University of Paderborn in Germany. This introduction addresses mathematicians, engineers, computer scientists, natural scientists and, more generally, all those in need of mathematical com­ putations for their education or their profession. Generally speaking, this book addresses anybody who wants to use the power of a modern computer algebra package. There are two ways to use a computer algebra system. On the one hand, you may use the mathematical knowledge it incorporates by calling system functions interactively. For example, you can compute symbolic integrals or generate and invert matrices by calling appropriate functions. They comprise the system's mathematical intelligence and may implement sophisticated al­ gorithms. Chapters 2 through 15 discuss this way of using MuPAD. On the other hand, with the help of MuPAD's programming language, you can easily add functionality to the system by implementing your own algorithms as MuPAD procedures. This is useful for special purpose applications if no ap­ propriate system functions exist. Chapters 16 through 18 are an introduction to programming in MuPAD.

Keywords

Computer Algebra Computer Visualization Mathematical and Computative Methods Scientific Computing Symbolic Computing algebra algorithms Approximation computer algebra computer algebra system differential equation intelligence operating system operator programming programming language scientific computing software transformation visualization

Authors and affiliations

  • Christopher Creutzig
    • 1
  • Walter Oevel
    • 2
  1. 1.Fakultät EIM-MUniversität PaderbornPaderbornGermany
  2. 2.SciFace Software GmbH & Co.KGPaderbornGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-59304-8
  • Copyright Information Springer-Verlag Berlin Heidelberg 2004
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-22184-5
  • Online ISBN 978-3-642-59304-8
  • Buy this book on publisher's site