# Distorted Probabilities and Choice under Risk

Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 363)

Advertisement

Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 363)

During the development of modern probability theory in the 17th cen tury it was commonly held that the attractiveness of a gamble offering the payoffs :1:17 ••• ,:l: with probabilities Pl, . . . , Pn is given by its expected n value L:~ :l:iPi. Accordingly, the decision problem of choosing among different such gambles - which will be called prospects or lotteries in the sequel-was thought to be solved by maximizing the corresponding expected values. The famous St. Petersburg paradox posed by Nicholas Bernoulli in 1728, however, conclusively demonstrated the fact that individuals l consider more than just the expected value. The resolution of the St. Petersburg paradox was proposed independently by Gabriel Cramer and Nicholas's cousin Daniel Bernoulli [BERNOULLI 1738/1954]. Their argument was that in a gamble with payoffs :l:i the decisive factors are not the payoffs themselves but their subjective values u( :l:i)' According to this argument gambles are evaluated on the basis of the expression L:~ U(Xi)pi. This hypothesis -with a somewhat different interpretation of the function u - has been given a solid axiomatic foundation in 1944 by v. Neumann and Morgenstern and is now known as the expected utility hypothesis. The resulting model has served for a long time as the preeminent theory of choice under risk, especially in its economic applications.

Non-linear utility Nutzentheorie Spieltheorie Wahrscheinlichkeit distorted probabilities rank-dependent utility theory utility theory

- DOI https://doi.org/10.1007/978-3-642-58203-5
- Copyright Information Springer-Verlag Berlin Heidelberg 1991
- Publisher Name Springer, Berlin, Heidelberg
- eBook Packages Springer Book Archive
- Print ISBN 978-3-540-54247-6
- Online ISBN 978-3-642-58203-5
- Series Print ISSN 0075-8442
- Buy this book on publisher's site