Partial Differential Equations II

Elements of the Modern Theory. Equations with Constant Coefficients

  • Yu. V. Egorov
  • M. A. Shubin

Part of the Encyclopaedia of Mathematical Sciences book series (volume 31)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Yu. V. Egorov, M. A. Shubin
    Pages 48-60
  3. Yu. V. Egorov, M. A. Shubin
    Pages 60-65
  4. Yu. V. Egorov, M. A. Shubin
    Pages 65-78
  5. Yu. V. Egorov, M. A. Shubin
    Pages 78-96
  6. Yu. V. Egorov, M. A. Shubin
    Pages 149-164
  7. Yu. V. Egorov, M. A. Shubin
    Pages 164-185
  8. Yu. V. Egorov, M. A. Shubin
    Pages 212-240
  9. Yu. V. Egorov, M. A. Shubin
    Pages 240-250
  10. Back Matter
    Pages 257-266

About this book


This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics.


Distributionen Partial differential equations Partielle Differentialgleichungen Pseudodifferentialoperatoren asymptotic methods asymptotische Methoden distributions microlocal analysis mikrolokale Analysis pseudodifferential operators differential equation differential operator distribution Fourier integral hyperbolic equation integral Microlocal analysis operator partial differential equation pseudodifferential operator

Editors and affiliations

  • Yu. V. Egorov
    • 1
  • M. A. Shubin
    • 2
  1. 1.Université Paul SabatierToulouseFrance
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 1994
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-65377-6
  • Online ISBN 978-3-642-57876-2
  • Series Print ISSN 0938-0396
  • Buy this book on publisher's site