Advertisement

Partially Supervised Learning

Second IAPR International Workshop, PSL 2013, Nanjing, China, May 13-14, 2013, Revised Selected Papers

  • Zhi-Hua Zhou
  • Friedhelm Schwenker
Conference proceedings PSL 2013

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8183)

Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 8183)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Gabriel B. P. Costa, Moacir Ponti, Alejandro C. Frery
    Pages 1-8
  3. Qing Da, Yang Yu, Zhi-Hua Zhou
    Pages 9-20
  4. Qian Li, Liping Jing, Jian Yu
    Pages 36-48
  5. Chunhong Lu, Zhaomin Zhu, Xiaofeng Gu
    Pages 49-57
  6. Dong Nie, Lin Li, Tingshao Zhu
    Pages 58-67
  7. Michel Tokic, Friedhelm Schwenker, Günther Palm
    Pages 68-79
  8. Evgeni Tsivtsivadze, Hanneke Borgdorff, Janneke van de Wijgert, Frank Schuren, Rita Verhelst, Tom Heskes
    Pages 80-90
  9. Tao Wang, Jin Tang, Bin Luo, Cheng Zhang
    Pages 91-103
  10. Back Matter
    Pages 117-117

About these proceedings

Introduction

This book constitutes the thoroughly refereed revised selected papers from the Second IAPR International Workshop, PSL 2013, held in Nanjing, China, in May 2013. The 10 papers included in this volume were carefully reviewed and selected from 26 submissions. Partially supervised learning is a rapidly evolving area of machine learning. It generalizes many kinds of learning paradigms including supervised and unsupervised learning, semi-supervised learning for classification and regression, transductive learning, semi-supervised clustering, multi-instance learning, weak label learning, policy learning in partially observable environments, etc.

Keywords

anomaly detection emotion recognition fuzzy clustering machine learning pattern recognition

Editors and affiliations

  • Zhi-Hua Zhou
    • 1
  • Friedhelm Schwenker
    • 2
  1. 1.National Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingPeople's Republic of China
  2. 2.Abt. NeuroinformatikUniversität UlmUlmGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-40705-5
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science
  • Print ISBN 978-3-642-40704-8
  • Online ISBN 978-3-642-40705-5
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site