The Languages of Western Tonality

  • Eytan Agmon

Part of the Computational Music Science book series (CMS)

Table of contents

  1. Front Matter
    Pages i-xxvii
  2. Proto-tonality

    1. Front Matter
      Pages 17-17
    2. Eytan Agmon
      Pages 19-29
    3. Eytan Agmon
      Pages 67-81
    4. Eytan Agmon
      Pages 83-102
    5. Eytan Agmon
      Pages 103-125
    6. Eytan Agmon
      Pages 127-143
  3. The Languages of Western Tonality

    1. Front Matter
      Pages 145-145
    2. Eytan Agmon
      Pages 147-155
    3. Eytan Agmon
      Pages 157-178
    4. Eytan Agmon
      Pages 179-188
    5. Eytan Agmon
      Pages 217-235
    6. Eytan Agmon
      Pages 237-249
    7. Eytan Agmon
      Pages 251-264
  4. Back Matter
    Pages 265-280

About this book


Tonal music, from a historical perspective, is far from homogenous; yet an enduring feature is a background "diatonic" system of exactly seven notes orderable cyclically by fifth. What is the source of the durability of the diatonic system, the octave of which is representable in terms of two particular integers, namely 12 and 7? And how is this durability consistent with the equally remarkable variety of musical styles — or languages — that the history of Western tonal music has taught us exist?

This book is an attempt to answer these questions. Using mathematical tools to describe and explain the Western musical system as a highly sophisticated communication system, this theoretical, historical, and cognitive study is unprecedented in scope and depth. The author engages in intense dialogue with 1000 years of music-theoretical thinking, offering answers to some of the most enduring questions concerning Western tonality.

The book is divided into two main parts, both governed by the communicative premise. Part I studies proto-tonality, the background system of notes prior to the selection of a privileged note known as "final." After some preliminaries that concern consonance and chromaticism, Part II begins with the notion "mode." A mode is "dyadic" or "triadic," depending on its "nucleus." Further, a "key" is a special type of "semi-key" which is a special type of mode. Different combinations of these categories account for tonal variety. Ninth-century music, for example, is a tonal language of dyadic modes, while seventeenth-century music is a language of triadic semi-keys.

While portions of the book are characterized by abstraction and formal rigor, more suitable for expert readers, it will also be of value to anyone intrigued by the tonal phenomenon at large, including music theorists, musicologists, and music-cognition researchers. The content is supported by a general index, a list of definitions, a list of notation used, and two appendices providing the basic mathematical background.


Computational music science Dyadic theory Harmonic systems Modal communication Music theory Pitch Prototonal theory Tonal communication Triadic theory

Authors and affiliations

  • Eytan Agmon
    • 1
  1. 1.Bar-Ilan University Dept. of MusicRamat-GanIsrael

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science
  • Print ISBN 978-3-642-39586-4
  • Online ISBN 978-3-642-39587-1
  • Series Print ISSN 1868-0305
  • Series Online ISSN 1868-0313
  • Buy this book on publisher's site