Meshfree Methods for Partial Differential Equations VI

  • Michael Griebel
  • Marc Alexander Schweitzer

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 89)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Axel Arnold, Olaf Lenz, Stefan Kesselheim, Rudolf Weeber, Florian Fahrenberger, Dominic Roehm et al.
    Pages 1-23
  3. Bob Peeters, Marcel Oliver, Onno Bokhove, Vladimir Molchanov
    Pages 25-43
  4. Etienne Emmrich, Richard B. Lehoucq, Dimitri Puhst
    Pages 45-65
  5. Wing Kam Liu, Adrian M. Kopacz, Tae-Rin Lee, Hansung Kim, Paolo Decuzzi
    Pages 67-74
  6. Marcus Rüter, Michael Hillman, Jiun-Shyan Chen
    Pages 75-92
  7. Agustín Bompadre, Luigi E. Perotti, Christian J. Cyron, Michael Ortiz
    Pages 111-126
  8. Marco Caliari, Alexander Ostermann, Stefan Rainer
    Pages 127-139
  9. Daniel C. Simkins Jr., Nathan Collier, Joseph B. Alford
    Pages 221-233
  10. Back Matter
    Pages 243-249

About these proceedings

Introduction

Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. Especially in a time-dependent setting or in the treatment of problems with strongly singular solutions their independence of a mesh makes these methods highly attractive. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering.

Keywords

engineering applications meshfree methods partial differential equations particle methods scientific computing

Editors and affiliations

  • Michael Griebel
    • 1
  • Marc Alexander Schweitzer
    • 2
  1. 1., Institut für Numerische SimulationUniversität BonnCityGermany
  2. 2.Institut für Parallele, und Verteilte SystemeUniversität StuttgartStuttgartGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-32979-1
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-32978-4
  • Online ISBN 978-3-642-32979-1
  • Series Print ISSN 1439-7358
  • About this book