On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills Green Functions

  • Markus Q.┬áHuber

Part of the Springer Theses book series (Springer Theses)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Markus Q. Huber
    Pages 1-6
  3. Markus Q. Huber
    Pages 7-24
  4. Markus Q. Huber
    Pages 25-35
  5. Markus Q. Huber
    Pages 37-58
  6. Markus Q. Huber
    Pages 81-106
  7. Markus Q. Huber
    Pages 107-108
  8. Back Matter
    Pages 109-137

About this book

Introduction

Quarks are the main constituents of protons and neutrons and hence are important building blocks of all the matter that surrounds us. However, quarks have the intriguing property that they never appear as isolated single particles but only in bound states. This phenomenon is called confinement and has been a central research topic of elementary particle physics for the last few decades. In order to find the mechanism that forbids the existence of free quarks many approaches and ideas are being followed, but by now it has become clear that they are not mutually exclusive but illuminate the problem from different perspectives.
Two such confinement scenarios are investigated in this thesis: Firstly, the importance of Abelian field components for the low-energy regime is corroborated, thus supporting the dual superconductor picture of confinement and secondly, the influence of the Gribov horizon on non-perturbative solutions is studied.

Keywords

Dyson-Schwinger equations Green functions Gribov-Zwanziger action Mechanisms of quark confinement Quark Confinement Yang-Mills Green Functions functional methods infrared behavior maximally Abelian gauge

Authors and affiliations

  • Markus Q.┬áHuber
    • 1
  1. 1., Institute of Nuclear PhysicsDarmstadt University of TechnologyDarmstadtGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-27691-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 2012
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-642-27690-3
  • Online ISBN 978-3-642-27691-0
  • Series Print ISSN 2190-5053
  • Series Online ISSN 2190-5061
  • About this book