Probability in Complex Physical Systems

In Honour of Erwin Bolthausen and Jürgen Gärtner

  • Jean-Dominique Deuschel
  • Barbara Gentz
  • Wolfgang König
  • Max von Renesse
  • Michael Scheutzow
  • Uwe Schmock
Conference proceedings

Part of the Springer Proceedings in Mathematics book series (PROM, volume 11)

Table of contents

  1. Front Matter
    Pages i-xix
  2. Laudatio: The Mathematical Work of Jürgen Gärtner

  3. The Parabolic Anderson Model

    1. Front Matter
      Pages 11-11
    2. Grégory Maillard, Thomas Mountford, Samuel Schöpfer
      Pages 33-68
    3. Fabienne Castell, Onur Gün, Grégory Maillard
      Pages 91-117
    4. Alexander Drewitz, Jürgen Gärtner, Alejandro F. Ramírez, Rongfeng Sun
      Pages 119-158
    5. Jürgen Gärtner, Frank den Hollander, Grégory Maillard
      Pages 159-193
    6. Harry Kesten, Alejandro F. Ramı́rez, Vladas Sidoravicius
      Pages 195-223
    7. Wolfgang König, Sylvia Schmidt
      Pages 225-245
  4. Self-Interacting Random Walks and Polymers

    1. Front Matter
      Pages 273-273
    2. David C. Brydges, Antoine Dahlqvist, Gordon Slade
      Pages 275-287
    3. Francesco Caravenna, Giambattista Giacomin, Fabio Lucio Toninelli
      Pages 289-311
    4. Anna Erschler, Bálint Tóth, Wendelin Werner
      Pages 313-338
    5. Dmitry Ioffe, Yvan Velenik
      Pages 339-369
  5. Branching Processes

    1. Front Matter
      Pages 371-371
    2. Klaus Fleischmann, Leonid Mytnik, Vitali Wachtel
      Pages 409-421
  6. Miscellaneous Topics in Statistical Mechanics

    1. Front Matter
      Pages 423-423
    2. Cédric Boutillier, Béatrice de Tilière
      Pages 491-512

About these proceedings


Probabilistic approaches have played a prominent role in the study of complex physical systems for more than thirty years. This volume collects twenty articles on various topics in this field, including self-interacting random walks and polymer models in random and non-random environments, branching processes, Parisi formulas and metastability in spin glasses, and hydrodynamic limits for gradient Gibbs models. The majority of these articles contain original results at the forefront of contemporary research; some of them include review aspects and summarize the state-of-the-art on topical issues – one focal point is the parabolic Anderson model, which is considered with various novel aspects including moving catalysts, acceleration and deceleration and fron propagation, for both time-dependent and time-independent potentials. The authors are among the world’s leading experts. This Festschrift honours two eminent researchers, Erwin Bolthausen and Jürgen Gärtner, whose scientific work has profoundly influenced the field and all of the present contributions.


60Gxx, 60Gxx, 82Bxx, 82Cxx, 82Dxx interacting random walks large deviations parabolic Anderson model random media statistical mechanics

Editors and affiliations

  • Jean-Dominique Deuschel
    • 1
  • Barbara Gentz
    • 2
  • Wolfgang König
    • 3
  • Max von Renesse
    • 4
  • Michael Scheutzow
    • 5
  • Uwe Schmock
    • 6
  1. 1.Institute for MathematicsTU BerlinBerlinGermany
  2. 2.Faculty of MathematicsUniversity of BielefeldBielefeldGermany
  3. 3.for Applied Analysis and StochasticsWeierstrass Institute BerlinBerlinGermany
  4. 4.Institute for MathematicsTU BerlinBerlinGermany
  5. 5.Institute for MathematicsTU BerlinBerlinGermany
  6. 6.Institute for Mathematical, Methods in EconomicsVienna University of TechnologyViennaAustria

Bibliographic information