From Objects to Diagrams for Ranges of Functors

  • Pierre Gillibert
  • Friedrich Wehrung

Part of the Lecture Notes in Mathematics book series (LNM, volume 2029)

Table of contents

  1. Front Matter
    Pages i-x
  2. Pierre Gillibert, Friedrich Wehrung
    Pages 1-34
  3. Pierre Gillibert, Friedrich Wehrung
    Pages 35-50
  4. Pierre Gillibert, Friedrich Wehrung
    Pages 51-79
  5. Pierre Gillibert, Friedrich Wehrung
    Pages 81-116
  6. Pierre Gillibert, Friedrich Wehrung
    Pages 117-129
  7. Pierre Gillibert, Friedrich Wehrung
    Pages 131-138
  8. Pierre Gillibert, Friedrich Wehrung
    Pages 139-141
  9. Back Matter
    Pages 143-158

About this book

Introduction

This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.

Keywords

18A30; 18A25; 18A20; 18A35 Category condensate larder lifter

Authors and affiliations

  • Pierre Gillibert
    • 1
  • Friedrich Wehrung
    • 2
  1. 1.Department of MathematicsCharles University in PraguePragueCzech Republic
  2. 2.Department of MathematicsUniversity of Caen, LMNO, CNRS UMR 6139Caen, CedexFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-21774-6
  • Copyright Information Springer-Verlag Berlin Heidelberg 2011
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-21773-9
  • Online ISBN 978-3-642-21774-6
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book