Modular Invariant Theory

  • H.E.A. Eddy Campbell
  • David L. Wehlau
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 139)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 1-24
  3. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 25-37
  4. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 39-57
  5. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 59-81
  6. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 83-97
  7. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 99-104
  8. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 105-139
  9. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 141-151
  10. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 153-177
  11. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 179-184
  12. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 185-189
  13. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 191-203
  14. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 205-210
  15. H. E. A. Eddy Campbell, David L. Wehlau
    Pages 211-221
  16. Back Matter
    Pages 223-233

About this book

Introduction

This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group. It explains a theory that is more complicated than the study of the classical non-modular case, and it describes many open questions.

Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.

Keywords

Finite groups Modular invariant theory

Authors and affiliations

  • H.E.A. Eddy Campbell
    • 1
  • David L. Wehlau
    • 2
  1. 1.Sir Howard Douglas Hall, Dept. MathematicsUniversity of New BrunswickFrederictonCanada
  2. 2.Dept. Mathematics & Computer ScienceRoyal Military College of CanadaKingstonCanada

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-17404-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 2011
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-17403-2
  • Online ISBN 978-3-642-17404-9
  • Series Print ISSN 0938-0396
  • About this book