## About this book

### Introduction

Mechanics is one of the oldest and at the same time newest disciplines, in the sense that there are methods and principles developed first in mechanics but now widely used in almost all branches of physics: electrodynamics, quantum mechanics, classical and quantum field theory, special and general theory of relativity, etc. More than that, there are some formalisms like Lagrangian and Hamiltonian approaches, which represent the key stone for the development of the above-mentioned disciplines.

During the last 20-25 years, classical mechanics has undergone an important revival associated with the progress in non-linear dynamics, applications of Noether’s theorem and the extension of variational principles in various interdisciplinary sciences (for instance, magnetofluid dynamics). Thus, there ought to exist a book concerned with the applied analytical formalism, first developed in the frame of theoretical mechanics, which has proved to be one of the most efficient tools of investigation in the entire arena of science.

The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, engineering, astronomy, applied mathematics and for researchers working in related subjects.

We hope that the original presentation and the distribution of the topics, the various applications in many branches of physics and the set of more than 100 proposed problems, shall make this book a comprehensive and useful tool for students and researchers.

### Keywords

### Bibliographic information

- DOI https://doi.org/10.1007/978-3-642-17234-2
- Copyright Information Springer-Verlag Berlin Heidelberg 2012
- Publisher Name Springer, Berlin, Heidelberg
- eBook Packages Physics and Astronomy Physics and Astronomy (R0)
- Print ISBN 978-3-642-16390-6
- Online ISBN 978-3-642-17234-2
- Buy this book on publisher's site