Symmetries of Compact Riemann Surfaces

  • Emilio Bujalance
  • Francisco Javier Cirre
  • José Manuel Gamboa
  • Grzegorz Gromadzki

Part of the Lecture Notes in Mathematics book series (LNM, volume 2007)

Table of contents

  1. Front Matter
    Pages i-xx
  2. Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 1-20
  3. Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 21-32
  4. Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 33-63
  5. Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 65-90
  6. Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 91-143
  7. Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 145-149
  8. Back Matter
    Pages 151-158

About this book

Introduction

This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.

Keywords

Automorphism Group Real form Riemann Surface Riemann surfaces Symmetry Topological type

Authors and affiliations

  • Emilio Bujalance
    • 1
  • Francisco Javier Cirre
    • 2
  • José Manuel Gamboa
    • 3
  • Grzegorz Gromadzki
    • 4
  1. 1.Matemáticas FundamentalesFacultad de Ciencias, UNEDMadridSpain
  2. 2.Matemáticas FundamentalesFacultad de Ciencias, UNEDMadridSpain
  3. 3.Facultad de Matemáticas, UCM, Departamento de ÁlgebraUniversidad Complutense MadridMadridSpain
  4. 4.Department of MathematicsUniversity of GdanskGdanskPoland

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-14828-6
  • Copyright Information Springer-Verlag Berlin Heidelberg 2010
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-14827-9
  • Online ISBN 978-3-642-14828-6
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book