Domain Decomposition Methods in Science and Engineering XIX

  • Yunqing Huang
  • Ralf Kornhuber
  • Olof Widlund
  • Jinchao Xu
Conference proceedings

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 78)

Table of contents

  1. Front Matter
    Pages i-xxiv
  2. Plenary Presentations

    1. Front Matter
      Pages 1-1
    2. Randolph E. Bank*, Hieu Nguyen†
      Pages 3-13
    3. Victorita Dolean, Mohamed El Bouajaji, Martin J. Gander, Stéphane Lanteri, Ronan Perrussel
      Pages 15-26
    4. Bedřich Sousedík*, Jan Mandel†
      Pages 39-50
    5. Yunqing Huang, Huayi Wei, Wei Yang, Nianyu Yi
      Pages 63-74
  3. Minisymposia

    1. Front Matter
      Pages 99-99
    2. Victorita Dolean, Martin J. Gander
      Pages 117-124
    3. Laurence Halpern, Caroline Japhet*, Jérémie Szeftel*
      Pages 133-140
    4. Andrew T. Barker, Xiao-Chuan Cai
      Pages 141-148
    5. Zih-Hao Wei, Feng-Nan Hwang, Tsung-Ming Huang, Weichung Wang
      Pages 157-164
    6. Jinchao Xu, Yunrong Zhu
      Pages 173-180
    7. Clemens Pechstein, Robert Scheichl
      Pages 197-204
    8. Jan Mandel*, Bedřich Sousedík†
      Pages 213-220
    9. Juan Galvis, Marcus Sarkis
      Pages 221-228
    10. Long Chen, Ricardo H. Nochetto, Chen-Song Zhang
      Pages 229-236
    11. Martin J. Gander, Laurence Halpern, Veronique Martin
      Pages 237-244
    12. Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel
      Pages 245-252
    13. Martin J. Gander, Loïc Gouarin, Laurence Halpern
      Pages 261-268
    14. Victorita Dolean, Mohamed El Bouajaji, Martin J. Gander, Stéphane Lanteri
      Pages 269-276
    15. Olaf Steinbach, Markus Windisch
      Pages 277-284
    16. Günther Of, Olaf Steinbach
      Pages 293-300
    17. Dylan Copeland, Michael Kolmbauer, Ulrich Langer
      Pages 301-308
  4. Contributed Presentations

About these proceedings


These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.


domain decomposition finite elements parallel computing preconditioned conjugate gradients

Editors and affiliations

  • Yunqing Huang
    • 1
  • Ralf Kornhuber
    • 2
  • Olof Widlund
    • 3
  • Jinchao Xu
    • 4
  1. 1., Department of MathematicsXiangtan UniversityXiangtanChina, People's Republic
  2. 2.FB Mathematik und InformatikFreie Universität BerlinBerlinGermany
  3. 3.Department of Mathematics, Courant Institute of Math. SciencesNew York UniversityNew YorkUSA
  4. 4.Eberly College of Science, Dept. MathematicsPennsylvania State UniversityUniversity ParkUSA

Bibliographic information