Fuzzy Preference Ordering of Interval Numbers in Decision Problems

  • Atanu Sengupta
  • Tapan Kumar Pal

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 238)

Table of contents

  1. Front Matter
  2. Atanu Sengupta, Tapan Kumar Pal
    Pages 1-23
  3. Atanu Sengupta, Tapan Kumar Pal
    Pages 25-37
  4. Atanu Sengupta, Tapan Kumar Pal
    Pages 39-57
  5. Atanu Sengupta, Tapan Kumar Pal
    Pages 59-89
  6. Atanu Sengupta, Tapan Kumar Pal
    Pages 91-109
  7. Atanu Sengupta, Tapan Kumar Pal
    Pages 111-119
  8. Atanu Sengupta, Tapan Kumar Pal
    Pages 121-137
  9. Atanu Sengupta, Tapan Kumar Pal
    Pages 155-159
  10. Back Matter

About this book

Introduction

In conventional mathematical programming, coefficients of problems are usually determined by the experts as crisp values in terms of classical mathematical reasoning. But in reality, in an imprecise and uncertain environment, it will be utmost unrealistic to assume that the knowledge and representation of an expert can come in a precise way. The wider objective of the book is to study different real decision situations where problems are defined in inexact environment. Inexactness are mainly generated in two ways – (1) due to imprecise perception and knowledge of the human expert followed by vague representation of knowledge as a DM; (2) due to huge-ness and complexity of relations and data structure in the definition of the problem situation. We use interval numbers to specify inexact or imprecise or uncertain data. Consequently, the study of a decision problem requires answering the following initial questions – How should we

  • compare and define preference ordering between two intervals?
  • interpret and deal inequality relations involving interval coefficients?
  • interpret and make way towards the goal of the decision problem?

The present research work consists of two closely related fields: approaches towards defining a generalized preference ordering scheme for interval attributes and approaches to deal with some issues having application potential in many areas of decision making.

Keywords

Fuzziness Fuzzy Preference Ordering of Interval Numbers Interval Decision Problems Traveling Salesman Problem decision problem knowledge linear optimization modeling optimization perception

Authors and affiliations

  • Atanu Sengupta
    • 1
  • Tapan Kumar Pal
    • 1
  1. 1.Vidyasagar UniversityMedinipurIndia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-89915-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 2009
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Engineering
  • Print ISBN 978-3-540-89914-3
  • Online ISBN 978-3-540-89915-0
  • Series Print ISSN 1434-9922
  • Series Online ISSN 1860-0808
  • About this book