Topology-Based Methods in Visualization II

  • Hans-Christian Hege
  • Konrad Polthier
  • Gerik Scheuermann

Part of the Mathematics and Visualization book series (MATHVISUAL)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Christoph Garth, Guo-Shi Li, Xavier Tricoche, Charles D. Hansen, Hans Hagen
    Pages 1-13
  3. Alexander Wiebel, Xavier Tricoche, Gerik Scheuermann
    Pages 31-43
  4. Chandrajit Bajaj, Andrew Gillette, Samrat Goswami
    Pages 45-58
  5. Kuangyu Shi, Holger Theisel, Helwig Hauser, Tino Weinkauf, Kresimir Matkovic, Hans-Christian Hege et al.
    Pages 75-88
  6. Tobias Salzbrunn, Gerik Scheuermann
    Pages 89-100
  7. Bernd Krauskopf, Hinke M Osinga, Eusebius J Doedel
    Pages 115-126
  8. Robert S. Laramee, Guoning Chen, Monika Jankun-Kelly, Eugene Zhang, David Thompson
    Pages 161-176

About this book

Introduction

Visualization research aims at providing insights into large, complex bodies of data. Topological methods are distinguished by their solid mathematical foundation, guiding the algorithmic analysis and its presentation among the various visualization techniques.

This book contains 13 peer-reviewed papers resulting from the second workshop on "Topology-Based Methods in Visualization", held 2007 in Grimma near Leipzig, Germany. All articles present original, unpublished work from leading experts. Together, these articles present the state of the art of topology-based visualization research.

Keywords

3D Data Analysis Geometry behavior chaos information visualization topology visualization

Editors and affiliations

  • Hans-Christian Hege
    • 1
  • Konrad Polthier
    • 2
  • Gerik Scheuermann
    • 3
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik Berlin Devision Scientific ComputingDepartment Visualization and Data AnalysisBerlinGermany
  2. 2.Institut für MathematikFreie Universität BerlinBerlinGermany
  3. 3.Fakultät für Mathematik und Informatik Institut für InformatikUniversität LeipzigLeipzigGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-88606-8
  • Copyright Information Springer Berlin Heidelberg 2009
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-540-88605-1
  • Online ISBN 978-3-540-88606-8
  • Series Print ISSN 1612-3786
  • About this book