Einstein Manifolds

  • Authors
  • Arthur L. Besse

Part of the Ergebnisse der Mathematik und ihrer Grenzgebiete book series (CLASSICS)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Arthur L. Besse
    Pages 1-19
  3. Arthur L. Besse
    Pages 20-65
  4. Arthur L. Besse
    Pages 66-93
  5. Arthur L. Besse
    Pages 94-115
  6. Arthur L. Besse
    Pages 116-136
  7. Arthur L. Besse
    Pages 154-176
  8. Arthur L. Besse
    Pages 177-207
  9. Arthur L. Besse
    Pages 208-234
  10. Arthur L. Besse
    Pages 235-277
  11. Arthur L. Besse
    Pages 278-317
  12. Arthur L. Besse
    Pages 340-368
  13. Arthur L. Besse
    Pages 369-395
  14. Arthur L. Besse
    Pages 396-421
  15. Arthur L. Besse
    Pages 422-431
  16. Arthur L. Besse
    Pages 432-455
  17. Back Matter
    Pages 456-512

About this book

Introduction

From the reviews:

"[...] an efficient reference book for many fundamental techniques of Riemannian geometry. [...] despite its length, the reader will have no difficulty in getting the feel of its contents and discovering excellent examples of all interaction of geometry with partial differential equations, topology, and Lie groups. Above all, the book provides a clear insight into the scope and diversity of problems posed by its title."
S.M. Salamon in MathSciNet 1988

"It seemed likely to anyone who read the previous book by the same author, namely "Manifolds all of whose geodesic are closed", that the present book would be one of the most important ever published on Riemannian geometry. This prophecy is indeed fulfilled."
T.J. Wilmore in Bulletin of the London Mathematical Society 1987

Keywords

Einstein Manifolds Riemannian geometry Submersion Topology Volume curvature equation function geometry manifold

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-74311-8
  • Copyright Information Springer-Verlag Berlin Heidelberg 1987
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-74120-6
  • Online ISBN 978-3-540-74311-8
  • Series Print ISSN 1431-0821
  • About this book