Non-Protein Coding RNAs

  • Nils G. Walter
  • Sarah A. Woodson
  • Robert T. Batey

Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 13)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Lorena Nasalean, Jesse Stombaugh, Craig L. Zirbel, Neocles B. Leontis
    Pages 1-26
  3. D. Thirumalai, Changbong Hyeon
    Pages 27-47
  4. Pan T. X. Li, Ignacio Tinoco Jr.
    Pages 49-72
  5. Juliane K. Soukup, Garrett A. Soukup
    Pages 129-143
  6. Sarah A. Woodson, Seema Chauhan
    Pages 145-166
  7. Amanda Solem, Nora Zingler, Anna Marie Pyle, Jennifer Li- Pook-Than
    Pages 167-182
  8. Jonas Noeske, Janina Buck, Jens Wöhnert, Harald Schwalbe
    Pages 229-247
  9. Taewoo Lee, Andrew L. Feig
    Pages 249-271
  10. Elena Menichelli, Kiyoshi Nagai
    Pages 273-284
  11. Kathleen Collins
    Pages 285-301
  12. Haixiao Gao, Jamie Le Barron, Joachim Frank
    Pages 303-316
  13. Chia-Ying Chu, Tariq M. Rana
    Pages 335-356
  14. Back Matter
    Pages 357-398

About this book


This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and other quantitative tools. This emerging field has begun to unravel the molecular underpinnings of how RNAs fulfill their multitude of roles in sustaining cellular life. The physical and chemical understanding of RNA biology that results from biophysical studies is critical to our ability to harness RNAs for use in biotechnology and human therapy, a prospect that has recently spawned a multi-billion dollar industry.


Einzelmolekülmikroskopie FRET Kernspinresonanz Nuclear Magnetic Resonance Riboswitch RNA Röntgenstrukturanalyse Single Molecule Microscopy X-ray X-ray crystallography electron microscopy enzymes gene expression microscopy physiology thermodynamics

Editors and affiliations

  • Nils G. Walter
    • 1
  • Sarah A. Woodson
    • 2
  • Robert T. Batey
    • 3
  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA
  2. 2.Department of BiophysicsJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of Colorado at BoulderBoulderUSA

Bibliographic information

  • DOI
  • Copyright Information Springer Berlin Heidelberg 2009
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-540-70833-9
  • Online ISBN 978-3-540-70840-7
  • Series Print ISSN 0932-2353
  • Buy this book on publisher's site