Topology-based Methods in Visualization

  • Helwig Hauser
  • Hans Hagen
  • Holger Theisel

Part of the Mathematics and Visualization book series (MATHVISUAL)

Table of contents

  1. Front Matter
    Pages IX-X
  2. Robert S. Laramee, Helwig Hauser, Lingxiao Zhao, Frits H. Post
    Pages 1-19
  3. Ronald Peikert, Filip Sadlo
    Pages 21-33
  4. Thomas Klein, Thomas Ertl
    Pages 35-49
  5. Tino Weinkauf, Holger Theisel, Hans-Christian Hege, Hans-Peter Seidel
    Pages 51-63
  6. Tobias Salzbrunn, Gerik Scheuermann
    Pages 65-77
  7. Helwig Hauser, Robert S. Laramee, Helmut Doleisch
    Pages 79-90
  8. Julia Ebling, Alexander Wiebel, Christoph Garth, Gerik Scheuermann
    Pages 91-103
  9. Holger Theisel, Tino Weinkauf, Hans-Christian Hege, Hans-Peter Seidel
    Pages 105-120
  10. Christoph Garth, Robert S. Laramee, Xavier Tricoche, Jürgen Schneider, Hans Hagen
    Pages 121-135
  11. Markus Trenker, Wolfgang Payer, Matthias Haigis
    Pages 137-149
  12. Peer-Timo Bremer, Valerio Pascucci
    Pages 151-169
  13. Ivan Viola, Eduard Gröller
    Pages 171-181
  14. Zsolt Tóth, Ivan Viola, Andrej Ferko, Eduard Gröller
    Pages 183-198
  15. Back Matter
    Pages 199-222

About these proceedings

Introduction

Enabling insight into large and complex datasets is a prevalent theme in visualization research for which different approaches are pursued.

Topology-based methods are built on the idea of abstracting characteristic structures such as the topological skeleton from the data and to construct the visualizations accordingly. There are currently new demands for and renewed interest in topology-based visualization solutions. This book presents 13 peer-reviewed papers as written results from the 2005 workshop “Topology-Based Methods in Visualization” that was initiated to enable additional stimulation in this field. It contains a longer chapter dedicated to a survey of the state-of-the-art, as well as a great deal of original work by leading experts that has not been published before, spanning both theory and applications. It captures key concepts and novel ideas and serves as an overview of current trends in topology-based visualization research.

Keywords

3D Topology-Based Visualization Vector-Field Visualization simulation topology visualization

Editors and affiliations

  • Helwig Hauser
    • 1
  • Hans Hagen
    • 2
  • Holger Theisel
    • 3
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany
  3. 3.Universität BielefeldUniversität BielefeldBielefeldGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-70823-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 2007
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-540-70822-3
  • Online ISBN 978-3-540-70823-0
  • Series Print ISSN 1612-3786
  • About this book