Geometry of Algebraic Curves

Volume II with a contribution by Joseph Daniel Harris

  • Enrico Arbarello
  • Maurizio Cornalba
  • Phillip A. Griffiths

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 268)

Table of contents

  1. Front Matter
    Pages I-XXX
  2. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 1-77
  3. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 79-166
  4. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 167-248
  5. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 249-328
  6. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 329-397
  7. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 399-439
  8. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 441-499
  9. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 501-563
  10. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 565-608
  11. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 609-665
  12. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 667-715
  13. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 717-777
  14. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths
    Pages 779-902
  15. Back Matter
    Pages 903-963

About this book

Introduction

The second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material will be of value to students who wish to learn the subject and to experts as a reference source.

The first volume appeared 1985 as volume 267 of the same series.

Keywords

14xx, 32xx, 30xx, 57xx, 05xx Brill-Noether theory Hilbert scheme and Kuranishi family Teichmüller space line bundles on the moduli space moduli space of stable curves

Authors and affiliations

  • Enrico Arbarello
    • 1
  • Maurizio Cornalba
    • 2
  • Phillip A. Griffiths
    • 3
  1. 1.Dipartimento di Matematica, "Guido Castelnuovo"Università di Roma La SapienzaRomaItaly
  2. 2.Dipartimento di Matematica, "Felice Casorati"Università di PaviaPaviaItaly
  3. 3.Institute for Advanced Study, School of MathematicsPrinceton UniversityPrincetonUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-69392-5
  • Copyright Information Springer-Verlag Berlin Heidelberg 2011
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-540-42688-2
  • Online ISBN 978-3-540-69392-5
  • Series Print ISSN 0072-7830
  • About this book