Advertisement

Knapsack Problems

  • Hans Kellerer
  • Ulrich Pferschy
  • David Pisinger

Table of contents

  1. Front Matter
    Pages I-XX
  2. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 1-14
  3. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 15-42
  4. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 43-72
  5. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 73-115
  6. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 117-160
  7. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 161-183
  8. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 185-209
  9. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 211-234
  10. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 235-283
  11. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 285-316
  12. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 317-347
  13. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 349-388
  14. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 389-424
  15. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 425-447
  16. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 449-482
  17. Hans Kellerer, Ulrich Pferschy, David Pisinger
    Pages 483-493
  18. Back Matter
    Pages 495-546

About this book

Introduction

Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance. However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the num­ ber of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years. Hence, two years ago the idea arose to produce a new monograph covering not only the most recent developments of the standard knapsack problem, but also giving a comprehensive treatment of the whole knapsack family including the siblings such as the subset sum problem and the bounded and unbounded knapsack problem, and also more distant relatives such as multidimensional, multiple, multiple-choice and quadratic knapsack problems in dedicated chapters.

Keywords

algorithms combinatorial optimization computer computer science linear optimization optimization programming

Authors and affiliations

  • Hans Kellerer
    • 1
  • Ulrich Pferschy
    • 1
  • David Pisinger
    • 2
  1. 1.Department of Statistics and Operations ResearchUniversity of GrazGrazAustria
  2. 2.DIKU, Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-24777-7
  • Copyright Information Springer-Verlag Berlin Heidelberg 2004
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-07311-3
  • Online ISBN 978-3-540-24777-7
  • Buy this book on publisher's site