The Cauchy-Riemann Complex

Integral Formulae and Neumann Problem

  • Ingo Lieb
  • Joachim Michel

Part of the Aspects of Mathematics book series (ASMA, volume 34)

Table of contents

  1. Front Matter
    Pages I-X
  2. Ingo Lieb, Joachim Michel
    Pages 1-7
  3. Ingo Lieb, Joachim Michel
    Pages 9-57
  4. Ingo Lieb, Joachim Michel
    Pages 59-72
  5. Ingo Lieb, Joachim Michel
    Pages 73-127
  6. Ingo Lieb, Joachim Michel
    Pages 129-181
  7. Ingo Lieb, Joachim Michel
    Pages 255-299
  8. Back Matter
    Pages 337-362

About this book

Introduction

The method of integral representations is developed in order to establish 1. classical fundamental results of complex analysis both elementary and advanced, 2. subtle existence and regularity theorems for the Cauchy-Riemann equations on complex manifolds. These results are then applied to important function theoretic questions. The book can be used for advanced courses and seminars at the graduate level; it contains to a large extent material which has not yet been covered in text books.

Keywords

Applications Bochner-Martinelli formula Hodge theory Komplexe Analysis Manifold Neumann problem calculus equation function theorem

Authors and affiliations

  • Ingo Lieb
    • 1
  • Joachim Michel
    • 2
  1. 1.Mathematisches InstitutRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Laboratoire de Mathématiques Pures et Appliquées Joseph LiouvilleCalais CedexFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-322-91608-2
  • Copyright Information Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 2002
  • Publisher Name Vieweg+Teubner Verlag
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-322-91610-5
  • Online ISBN 978-3-322-91608-2
  • Series Print ISSN 0179-2156
  • About this book