Approximate Circuits

Methodologies and CAD

  • Sherief Reda
  • Muhammad Shafique

Table of contents

  1. Front Matter
    Pages i-xxix
  2. Approximate Arithmetic Circuit

    1. Front Matter
      Pages 1-1
    2. Muhammad Abdullah Hanif, Rehan Hafiz, Muhammad Shafique
      Pages 3-23
    3. Soheil Hashemi, Sherief Reda
      Pages 25-44
    4. Semeen Rehman, Bharath Srinivas Prabakaran, Walaa El-Harouni, Muhammad Shafique, Jörg Henkel
      Pages 45-66
    5. Honglan Jiang, Leibo Liu, Fabrizio Lombardi, Jie Han
      Pages 67-98
    6. Sana Mazahir, Muhammad Kamran Ayub, Osman Hasan, Muhammad Shafique
      Pages 99-120
  3. Approximate Circuit Synthesis

    1. Front Matter
      Pages 121-121
    2. Ashish Ranjan, Swagath Venkataramani, Shubham Jain, Younghoon Kim, Shankar Ganesh Ramasubramanian, Arnab Raha et al.
      Pages 123-140
    3. Soheil Hashemi, Hokchhay Tann, Sherief Reda
      Pages 141-154
    4. Saman Froehlich, Daniel Große, Rolf Drechsler
      Pages 155-174
    5. Lukas Sekanina, Zdenek Vasicek, Vojtech Mrazek
      Pages 175-203
    6. Seogoo Lee, Andreas Gerstlauer
      Pages 205-223
    7. Deepashree Sengupta, Jiang Hu, Sachin S. Sapatnekar
      Pages 225-246
  4. Application-Specific Approximate Accelerators and Systems

    1. Front Matter
      Pages 247-247
    2. Bharath Srinivas Prabakaran, Walaa El-Harouni, Semeen Rehman, Muhammad Shafique
      Pages 249-268
    3. Muhammad Abdullah Hanif, Muhammad Usama Javed, Rehan Hafiz, Semeen Rehman, Muhammad Shafique
      Pages 269-288
    4. Hokchhay Tann, Soheil Hashemi, Sherief Reda
      Pages 289-305
    5. Jungwook Choi, Swagath Venkataramani
      Pages 307-329
    6. Hokchhay Tann, Soheil Hashemi, Francesco Buttafuoco, Sherief Reda
      Pages 331-348
  5. Approximate Methods for CPUs and GPUs

    1. Front Matter
      Pages 369-369
    2. Nam Sung Kim, Ulya R. Karpuzcu
      Pages 371-382
    3. Mohsen Imani, Tajana S. Rosing
      Pages 383-398
    4. Natalie Enright Jerger, Joshua San Miguel
      Pages 399-416
    5. Amir Yazdanbakhsh, Gennady Pekhimenko, Hadi Esmaeilzadeh, Onur Mutlu, Todd C. Mowry
      Pages 417-441
    6. Weng-Fai Wong, Pooja Roy, Rajashi Ray, Nhut-Minh Ho
      Pages 443-463
  6. Back Matter
    Pages 465-479

About this book


This book provides readers with a comprehensive, state-of-the-art overview of approximate computing, enabling the design trade-off of accuracy for achieving better power/performance efficiencies, through the simplification of underlying computing resources.  The authors describe in detail various efforts to generate approximate hardware systems, while still providing an overview of support techniques at other computing layers. The book is organized by techniques for various hardware components, from basic building blocks to general circuits and systems.

  • Presents an overview of the approximate arithmetic building blocks that can be used for designing power/performance efficient computing units;
  • Discusses effective memory approximation techniques to employ in conventional, i.e., DRAM and SRAM, as well as emerging, i.e., PCM and STT-RAM, memory technologies, for improving performance, power, and/or energy efficiency of the memory for error resilient applications;
  • Includes an overview of hardware or software/hardware approximation techniques that operate across entire computing devices, including processors, graphical processors, and accelerators that can form a SoC with processors.


approximate by design stochastic computing probabilistic computing voltage overscaling variability tolerance

Editors and affiliations

  • Sherief Reda
    • 1
  • Muhammad Shafique
    • 2
  1. 1.Brown UniversityRhode Island, ProvidenceUSA
  2. 2.Vienna University of TechnologyWienAustria

Bibliographic information