Advertisement

Geometric Aspects of the Trace Formula

  • Werner Müller
  • Sug Woo Shin
  • Nicolas Templier
Conference proceedings SSTF 2016

Part of the Simons Symposia book series (SISY)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. James Arthur
    Pages 1-21
  3. Anne-Marie Aubert, Ahmed Moussaoui, Maarten Solleveld
    Pages 23-84
  4. Pierre-Henri Chaudouard
    Pages 85-120
  5. Aaron Christie, Paul Mezo
    Pages 121-161
  6. Wee Teck Gan, Wen-Wei Li
    Pages 183-210
  7. Colette Moeglin, David Renard
    Pages 299-320
  8. Yiannis Sakellaridis
    Pages 321-349

About these proceedings

Introduction

The second of three volumes devoted to the study of the trace formula, these proceedings focus on automorphic representations of higher rank groups. Based on research presented at the 2016 Simons Symposium on Geometric Aspects of the Trace Formula that took place in Schloss Elmau, Germany, the volume contains both original research articles and articles that synthesize current knowledge and future directions in the field. The articles discuss topics such as the classification problem of representations of reductive groups, the structure of Langlands and Arthur packets, interactions with geometric representation theory, and conjectures on the global automorphic spectrum.

Suitable for both graduate students and researchers, this volume presents the latest research in the field. Readers of the first volume Families of Automorphic Forms and the Trace Formula will find this a natural continuation of the study of the trace formula.

Keywords

automorphic forms geometric representation theory Langlands Forms Symplectic Groups Orthogonal Groups trace formula geometric aspects Shumura-Waldspurger

Editors and affiliations

  • Werner Müller
    • 1
  • Sug Woo Shin
    • 2
  • Nicolas Templier
    • 3
  1. 1.Mathematical InstituteUniversity of BonnBonnGermany
  2. 2.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-94833-1
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-94832-4
  • Online ISBN 978-3-319-94833-1
  • Series Print ISSN 2365-9564
  • Series Online ISSN 2365-9572
  • Buy this book on publisher's site