Advertisement

Pseudocompact Topological Spaces

A Survey of Classic and New Results with Open Problems

  • Michael Hrušák
  • Ángel Tamariz-Mascarúa
  • Mikhail Tkachenko

Part of the Developments in Mathematics book series (DEVM, volume 55)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. J. Angoa-Amador, A. Contreras-Carreto, M. Ibarra-Contreras, Á. Tamariz-Mascarúa
    Pages 1-38
  3. M. Tkachenko
    Pages 39-76
  4. S. García-Ferreira, Y. F. Ortiz-Castillo
    Pages 77-105
  5. A. Dorantes-Aldama, O. Okunev, Á. Tamariz-Mascarúa
    Pages 151-189
  6. M. Madriz-Mendoza, V. V. Tkachuk, R. G. Wilson
    Pages 191-216
  7. N. Antonyan, S. Antonyan, M. Sanchis
    Pages 217-252
  8. F. Hernández-Hernández, M. Hrušák
    Pages 253-289
  9. Back Matter
    Pages 291-299

About this book

Introduction

This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures.

The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.


Keywords

Pseudocompact space Countably compact Topological group Compactification Spaces of continuous functions Topology Hrusak

Editors and affiliations

  • Michael Hrušák
    • 1
  • Ángel Tamariz-Mascarúa
    • 2
  • Mikhail Tkachenko
    • 3
  1. 1.Centro de Ciencias MatemáticasUniversidad Nacional Autónoma de México-Campus MoreliaMoreliaMexico
  2. 2.Departamento de Matemáticas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.Departamento de MatemáticasUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-91680-4
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-91679-8
  • Online ISBN 978-3-319-91680-4
  • Series Print ISSN 1389-2177
  • Series Online ISSN 2197-795X
  • Buy this book on publisher's site