Composed of contributions from leading experts in quantum foundations, this volume presents viewpoints on a number of complex problems through informational, probabilistic, and mathematical perspectives and features novel mathematical models of quantum and subquantum phenomena. Rich with multi-disciplinary mathematical content, this book includes applications of partial differential equations in quantum field theory, differential geometry, oscillatory processes and vibrations, and Feynman integrals for quickly growing potential functions.

Due to rapid growth in the field in recent years, this volume aims to promote interdisciplinary collaboration in the areas of quantum probability, information, communication and foundation, and mathematical physics. Many papers discuss complex yet novel problems that depart from the mainstream of quantum physical studies. Others devote explanation to fundamental problems of the conventional quantum theory, including its mathematical formalism. Overall, authors cover a diverse set of topics, including quantum and classical field theory and oscillatory processing, quantum mechanics from a Darwinian evolutionary perspective, and biological applications of quantum theory.

Together in one volume, these essays will be useful to experts in the corresponding areas of quantum theory. Theoreticians, experimenters, mathematicians, and even philosophers in quantum physics and quantum probability and information theory can consider this book a valuable resource.