Advertisement

Unbounded Weighted Composition Operators in L²-Spaces

  • Piotr Budzyński
  • Zenon Jabłoński
  • Il Bong Jung
  • Jan Stochel

Part of the Lecture Notes in Mathematics book series (LNM, volume 2209)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 1-12
  3. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 13-32
  4. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 33-55
  5. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 57-69
  6. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 71-92
  7. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 93-115
  8. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 117-143
  9. Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel
    Pages 145-160
  10. Back Matter
    Pages 161-182

About this book

Introduction

This book establishes the foundations of the theory of bounded and unbounded weighted composition operators in L²-spaces. It develops the theory in full generality, meaning that the weighted composition operators under consideration are not regarded as products of multiplication and composition operators. A variety of seminormality properties are characterized and the first-ever criteria for subnormality of unbounded weighted composition operators is provided. The subtle interplay between the classical moment problem, graph theory and the injectivity problem is revealed and there is an investigation of the relationships between weighted composition operators and the corresponding multiplication and composition operators. The optimality of the obtained results is illustrated by a variety of examples, including those of discrete and continuous types. 

The book is primarily aimed at researchers in single or multivariable operator theory.

Keywords

Weighted Composition Operator Conditional Expectation Hyponormal Operator Subnormal Operator Quasinormal Operator Consistency Condition Moment Problems Tensor Product Selfadjoint Operator Normal Operator

Authors and affiliations

  • Piotr Budzyński
    • 1
  • Zenon Jabłoński
    • 2
  • Il Bong Jung
    • 3
  • Jan Stochel
    • 4
  1. 1.Katedra Zastosowań MatematykiUniwersytet Rolniczy w KrakowieKrakówPoland
  2. 2.Instytut MatematykiUniwersytet JagiellońskiKrakówPoland
  3. 3.Department of MathematicsKyungpook National UniversityDaeguKorea (Republic of)
  4. 4.Instytut MatematykiUniwersytet JagiellońskiKrakówPoland

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-74039-3
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-74038-6
  • Online ISBN 978-3-319-74039-3
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site