The Topos of Music I: Theory

Geometric Logic, Classification, Harmony, Counterpoint, Motives, Rhythm

  • Guerino Mazzola

Part of the Computational Music Science book series (CMS)

Table of contents

  1. Front Matter
    Pages i-xlix
  2. Introduction and Orientation

    1. Front Matter
      Pages 1-1
    2. Guerino Mazzola
      Pages 3-7
    3. Guerino Mazzola
      Pages 9-19
    4. Guerino Mazzola
      Pages 21-25
    5. Guerino Mazzola
      Pages 27-32
  3. Navigation on Concept Spaces

    1. Front Matter
      Pages 33-33
    2. Guerino Mazzola
      Pages 35-40
    3. Guerino Mazzola
      Pages 41-85
  4. Local Theory

    1. Front Matter
      Pages 87-87
    2. Guerino Mazzola
      Pages 89-112
    3. Guerino Mazzola
      Pages 113-144
    4. Guerino Mazzola
      Pages 145-156
    5. Guerino Mazzola
      Pages 157-165
    6. Guerino Mazzola
      Pages 167-223
    7. Guerino Mazzola
      Pages 225-241
  5. Global Theory

    1. Front Matter
      Pages 243-243
    2. Guerino Mazzola
      Pages 245-271
    3. Guerino Mazzola
      Pages 273-285
    4. Guerino Mazzola
      Pages 287-301

About this book

Introduction

This is the first volume of the second edition of the now classic book “The Topos of Music”. The author explains the theory's conceptual framework of denotators and forms, the classification of local and global musical objects, the mathematical models of harmony and counterpoint, and topologies for rhythm and motives.

Keywords

mathematical music theory topos theory music software concept architectures classification of musical objects and processes harmony counterpoint motivic topologies

Authors and affiliations

  • Guerino Mazzola
    • 1
  1. 1.School of Music University of MinnesotaMinneapolisUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-64364-9
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2017
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-319-64363-2
  • Online ISBN 978-3-319-64364-9
  • Series Print ISSN 1868-0305
  • Series Online ISSN 1868-0313
  • About this book