Advertisement

Scale Space and Variational Methods in Computer Vision

6th International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 2017, Proceedings

  • François Lauze
  • Yiqiu Dong
  • Anders Bjorholm Dahl
Conference proceedings SSVM 2017

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Also part of the Image Processing, Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 10302)

Table of contents

  1. Front Matter
    Pages I-XV
  2. Scale Space and PDE Methods

    1. Front Matter
      Pages 1-1
    2. Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, Daniel Cremers, Guy Gilboa et al.
      Pages 41-53
    3. Fang Yang, Laurent D. Cohen
      Pages 54-65
    4. Laurent Hoeltgen, Isaac Harris, Michael Breuß, Andreas Kleefeld
      Pages 66-79
    5. Leonie Zeune, Stephan A. van Gils, Leon W. M. M. Terstappen, Christoph Brune
      Pages 80-93
  3. Restoration and Reconstruction

    1. Front Matter
      Pages 107-107
    2. Leah Bar, Nir Sochen, Nahum Kiryati
      Pages 109-120
    3. Robin Dirk Adam, Pascal Peter, Joachim Weickert
      Pages 121-132
    4. Jorge Gutierrez, Julien Rabin, Bruno Galerne, Thomas Hurtut
      Pages 172-183
    5. Paul Riot, Andrés Almansa, Yann Gousseau, Florence Tupin
      Pages 184-195
    6. Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne
      Pages 196-207
  4. Tomographic Reconstruction

    1. Front Matter
      Pages 233-233
    2. Jan Kuske, Paul Swoboda, Stefania Petra
      Pages 235-246
    3. Matthias Zisler, Freddie Åström, Stefania Petra, Christoph Schnörr
      Pages 247-259
    4. Hans Martin Kjer, Yiqiu Dong, Per Christian Hansen
      Pages 260-270
    5. François Lauze, Yvain Quéau, Esben Plenge
      Pages 308-319
  5. Segmentation

    1. Front Matter
      Pages 321-321
    2. Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra
      Pages 323-334
    3. Martin Huska, Alessandro Lanza, Serena Morigi, Fiorella Sgallari
      Pages 348-360
    4. Fabrizio Savarino, Ruben Hühnerbein, Freddie Åström, Judit Recknagel, Christoph Schnörr
      Pages 361-372
    5. Freddie Åström, Ruben Hühnerbein, Fabrizio Savarino, Judit Recknagel, Christoph Schnörr
      Pages 373-385
    6. Jacob Daniel Kirstejn Hansen, François Lauze
      Pages 396-407
    7. Vedrana Andersen Dahl, Anders Bjorholm Dahl
      Pages 421-432
  6. Convex and Non-convex Modeling and Optimization in Imaging

    1. Front Matter
      Pages 433-433
    2. Birgit Komander, Dirk A. Lorenz
      Pages 435-446
    3. Ronny Bergmann, Jan Henrik Fitschen, Johannes Persch, Gabriele Steidl
      Pages 447-459
    4. Jan Henrik Fitschen, Friederike Laus, Bernhard Schmitzer
      Pages 460-472
    5. Alexander Effland, Martin Rumpf, Florian Schäfer
      Pages 473-485
    6. Sebastian Neumayer, Max Nimmer, Gabriele Steidl, Henrike Stephani
      Pages 486-497
    7. Alessandro Lanza, Federica Sciacchitano, Serena Morigi, Fiorella Sgallari
      Pages 498-510
    8. Martin Benning, Guy Gilboa, Joana Sarah Grah, Carola-Bibiane Schönlieb
      Pages 511-523
    9. Jing Yuan, Ke Yin, Yi-Guang Bai, Xiang-Chu Feng, Xue-Cheng Tai
      Pages 524-534
  7. Optical Flow, Motion Estimation and Registration

    1. Front Matter
      Pages 535-535
    2. Daniel Maurer, Michael Stoll, Sebastian Volz, Patrick Gairing, Andrés Bruhn
      Pages 537-549

About these proceedings

Introduction

This book constitutes the refereed proceedings of the 6th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2017, held in Kolding, Denmark, in June 2017. 
The 55 revised full papers presented were carefully reviewed and selected from 77 submissions. The papers are organized in the following topical sections: Scale Space and PDE Methods; Restoration and Reconstruction; Tomographic Reconstruction; Segmentation; Convex and Non-Convex Modeling and Optimization in Imaging; Optical Flow, Motion Estimation and Registration; 3D Vision.

Keywords

Image analysis Computer vision PDE Scale space Variational methods Optimization Segmentation Tomography Registration Optical flow 3D vision

Editors and affiliations

  1. 1.University of Copenhagen CopenhagenDenmark
  2. 2.Technical University of Denmark Kongens LyngbyDenmark
  3. 3.Technical University of Denmark Kongens LyngbyDenmark

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-58771-4
  • Copyright Information Springer International Publishing AG 2017
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-319-58770-7
  • Online ISBN 978-3-319-58771-4
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site