Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

FVCA 8, Lille, France, June 2017

  • Clément Cancès
  • Pascal Omnes
Conference proceedings FVCA 2017

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)

Table of contents

  1. Front Matter
    Pages i-xv
  2. Hyperbolic Problems

    1. Front Matter
      Pages 1-1
    2. David Iampietro, Frédéric Daude, Pascal Galon, Jean-Marc Hérard
      Pages 3-11
    3. Manuel J. Castro, José M. Gallardo, Antonio Marquina
      Pages 23-31
    4. Charles Demay, Christian Bourdarias, Benoît de Laage de Meux, Stéphane Gerbi, Jean-Marc Hérard
      Pages 33-41
    5. Clément Colas, Martin Ferrand, Jean-Marc Hérard, Erwan Le Coupanec, Xavier Martin
      Pages 53-61
    6. Christophe Chalons, Régis Duvigneau, Camilla Fiorini
      Pages 71-79
    7. Jooyoung Hahn, Karol Mikula, Peter Frolkovič, Branislav Basara
      Pages 81-89
    8. Thierry Goudon, Julie Llobell, Sebastian Minjeaud
      Pages 91-99
    9. Christian Bourdarias, Stéphane Gerbi, Ralph Lteif
      Pages 101-108
    10. Hamza Boukili, Jean-Marc Hérard
      Pages 109-117
    11. M. J. Castro, C. Escalante, T. Morales de Luna
      Pages 119-126
    12. Mohamed Boubekeur, Fayssal Benkhaldoun, Mohammed Seaid
      Pages 137-144
    13. Ward Melis, Thomas Rey, Giovanni Samaey
      Pages 145-153
    14. Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro
      Pages 155-162
    15. David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret
      Pages 171-178
    16. M. Lukáčová-Medvid’ová, J. Rosemeier, P. Spichtinger, B. Wiebe
      Pages 179-187
    17. Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Yohan Penel
      Pages 209-217
    18. Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Anne Mangeney, Carlos Parés, Jacques Sainte-Marie
      Pages 219-226
    19. Emanuela Abbate, Angelo Iollo, Gabriella Puppo
      Pages 227-235
    20. Anja Jeschke, Stefan Vater, Jörn Behrens
      Pages 247-255
    21. Dionysios Grapsas, Raphaèle Herbin, Jean-Claude Latché
      Pages 285-293
  3. Elliptic and Parabolic Problems

    1. Front Matter
      Pages 305-305
    2. Sarvesh Kumar, Ricardo Ruiz-Baier, Ruchi Sandilya
      Pages 307-315
    3. L. Beaude, K. Brenner, S. Lopez, R. Masson, F. Smai
      Pages 317-325
    4. Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie Wolf
      Pages 327-335
    5. Christoph Erath, Robert Schorr
      Pages 337-345
    6. Thomas Fetzer, Christoph Grüninger, Bernd Flemisch, Rainer Helmig
      Pages 347-356
    7. I. Ambartsumyan, E. Khattatov, I. Yotov
      Pages 377-385
    8. Jürgen Fuhrmann, Annegret Glitzky, Matthias Liero
      Pages 397-405
    9. Martin Schneider, Dennis Gläser, Bernd Flemisch, Rainer Helmig
      Pages 417-425
    10. Jan ten Thije Boonkkamp, Martijn Anthonissen, Ruben Kwant
      Pages 437-445
    11. Birane Kane, Robert Klöfkorn, Christoph Gersbacher
      Pages 447-456

Other volumes

  1. FVCA 8, Lille, France, June 2017
  2. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
    FVCA 8, Lille, France, June 2017

About these proceedings


This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the
discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

The book is useful for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.


65-06, 65Mxx, 65Nxx, 76xx, 78xx,85-08, 86-08, 92- finite volume schemes conservation and balance laws numerical analysis conference proceedings high performance computing incompressible flows numerical modelling numerical simulations scientific computing

Editors and affiliations

  • Clément Cancès
    • 1
  • Pascal Omnes
    • 2
  1. 1.Equipe RAPSODIInria Lille - Nord EuropeVilleneuve-d’AscqFrance
  2. 2.Commissariat à l'énergie atomique et aux énergies alternativesCentre de SaclayGif-sur-YvetteFrance

Bibliographic information