High Dimensional Probability VII

The Cargèse Volume

  • Christian Houdré
  • David M. Mason
  • Patricia Reynaud-Bouret
  • Jan Rosiński
Conference proceedings

Part of the Progress in Probability book series (PRPR, volume 71)

Table of contents

  1. Front Matter
    Pages i-xxviii
  2. Inequalities and Convexity

  3. Limit Theorems

    1. Front Matter
      Pages 217-217
    2. Paul Deheuvels, Joseph G. Steinebach
      Pages 219-254
    3. Qi-Man Shao
      Pages 281-291
  4. Stochastic Processes

  5. High Dimensional Statistics

    1. Front Matter
      Pages 395-395
    2. Vladimir Koltchinskii, Dong Xia
      Pages 397-423
    3. Matthieu Lerasle, Nelo Molter Magalhães, Patricia Reynaud-Bouret
      Pages 425-460
  6. Back Matter
    Pages 461-461

About these proceedings


This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France.

High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs.

The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.


infinite dimensional spaces probability higher dimensions random matrix theory random phenomena stochastic processes

Editors and affiliations

  • Christian Houdré
    • 1
  • David M. Mason
    • 2
  • Patricia Reynaud-Bouret
    • 3
  • Jan Rosiński
    • 4
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.University of DelawareDepartment of Applied Economics and Stat University of DelawareNewarkUSA
  3. 3.Centre national de la recherche scientifique, Laboratoire J.A. DieudonnéUniversité Côte d’AzurNiceFrance
  4. 4.Department of MathematicsUniversity of Tennessee Department of MathematicsKnoxvilleUSA

Bibliographic information

  • DOI
  • Copyright Information Springer International Publishing Switzerland 2016
  • Publisher Name Birkhäuser, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-40517-9
  • Online ISBN 978-3-319-40519-3
  • Series Print ISSN 1050-6977
  • Series Online ISSN 2297-0428
  • Buy this book on publisher's site