Medical Learning Meets Medical Imaging

Machine Learning Meets Medical Imaging

First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers

  • Kanwal Bhatia
  • Herve Lombaert

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9487)

Also part of the Image Processing, Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 9487)

Table of contents

  1. Front Matter
    Pages I-X
  2. Motion

    1. Front Matter
      Pages 1-1
    2. Alexander Loktyushin, Christian Schuler, Klaus Scheffler, Bernhard Schölkopf
      Pages 3-12
    3. Amir Alansary, Matthew Lee, Kevin Keraudren, Bernhard Kainz, Christina Malamateniou, Mary Rutherford et al.
      Pages 13-22
  3. Brain

    1. Front Matter
      Pages 23-23
    2. Orhan Firat, Emre Aksan, Ilke Oztekin, Fatos T. Yarman Vural
      Pages 25-34
    3. Lorenzi Marco, Gabriel Ziegler, Daniel C. Alexander, Sebastien Ourselin
      Pages 35-44
    4. Jonathan Young, Alex Mendelson, M. Jorge Cardoso, Marc Modat, John Ashburner, Sebastien Ourselin
      Pages 45-53
  4. Computer Aided Diagnosis

    1. Front Matter
      Pages 55-55
    2. Claudio Stamile, Gabriel Kocevar, Salem Hannoun, Françoise Durand-Dubief, Dominique Sappey-Marinier
      Pages 57-64
    3. Mahsa Shakeri, Hervé Lombaert, Samuel Kadoury
      Pages 65-73
    4. Rahaf Aljundi, Jérôme Lehaire, Fabrice Prost-Boucle, Olivier Rouvière, Carole Lartizien
      Pages 74-82
  5. Segmentation

    1. Front Matter
      Pages 83-83
    2. Annegreet van Opbroek, Hakim C. Achterberg, Marleen de Bruijne
      Pages 85-93
    3. Gerard Sanroma, Oualid M. Benkarim, Gemma Piella, Guorong Wu, Xiaofeng Zhu, Dinggang Shen et al.
      Pages 94-103
  6. Back Matter
    Pages 105-105

About these proceedings

Introduction

Normal 0 false false false EN-US X-NONE X-NONE

/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} This book constitutes the revised selected papers of the First International Workshop on Machine Learning in Medical Imaging, MLMMI 2015, held in July 2015 in Lille, France, in conjunction with the 32nd International Conference on Machine Learning, ICML 2015.

The 10 papers presented in this volume were carefully reviewed and selected for inclusion in the book. The papers communicate the specific needs and nuances of medical imaging to the machine learning community while exposing the medical imaging community to current trends in machine learning.

 

Keywords

bioinformatics computational biology computer vision machine learning mathematical analysis Alzheimer's disease brain classification clinical classification computer-aided detection system gaussian processes graph kernel interpretability learning MRI multi-kernel multiple sclerosis structural connectome SVM transfer learning

Editors and affiliations

  • Kanwal Bhatia
    • 1
  • Herve Lombaert
    • 2
  1. 1.Imperial College LondonUnited Kingdom
  2. 2.INRIA Sophia-Antipolis ValbonneFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-27929-9
  • Copyright Information Springer International Publishing Switzerland 2015
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-319-27928-2
  • Online ISBN 978-3-319-27929-9
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • About this book