Advertisement

Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential

  • Tarik Berrada

Part of the Springer Theses book series (Springer Theses)

Table of contents

  1. Front Matter
    Pages i-xix
  2. Tarik Berrada
    Pages 1-61
  3. Tarik Berrada
    Pages 63-104
  4. Back Matter
    Pages 219-229

About this book

Introduction

This thesis demonstrates a full Mach–Zehnder interferometer with interacting Bose–Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners.

Particle interactions in the Bose–Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.

Keywords

Bose-Einstein condensate interferometry Trapped BECs Manipulation of trapped atoms Ultracold quantum gases Atom chips Many-body entanglement Squeezed states

Authors and affiliations

  • Tarik Berrada
    • 1
  1. 1.Vienna University of TechnologyInst. of Atomic and Subatomic PhysicsViennaAustria

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-27233-7
  • Copyright Information Springer International Publishing Switzerland 2016
  • Publisher Name Springer, Cham
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-319-27232-0
  • Online ISBN 978-3-319-27233-7
  • Series Print ISSN 2190-5053
  • Series Online ISSN 2190-5061
  • Buy this book on publisher's site