Gems of Combinatorial Optimization and Graph Algorithms

  • Andreas S. Schulz
  • Martin Skutella
  • Sebastian Stiller
  • Dorothea Wagner

Table of contents

  1. Front Matter
    Pages i-x
  2. Stefan Felsner
    Pages 1-12
  3. Sándor P. Fekete
    Pages 29-36
  4. Guido Schäfer
    Pages 49-57
  5. Karsten Weihe
    Pages 59-68
  6. Rudolf Müller, Marc Uetz
    Pages 83-94
  7. Tobias Harks, Britta Peis
    Pages 103-111
  8. Max Klimm
    Pages 113-123
  9. Martin Skutella
    Pages 125-132
  10. Sebastian Stiller
    Pages 143-150

About this book


Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory?  Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar?  Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science?  

Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas.  Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks.  

This volume is aimed at readers with some familiarity of combinatorial optimization, and appeals to researchers, graduate students, and advanced undergraduate students alike.


Lectures in combinatorial optimization Graph algorithms and network analysis Advanced topics in discrete mathematics Sequencing and scheduling Algorithmic game theory

Editors and affiliations

  • Andreas S. Schulz
    • 1
  • Martin Skutella
    • 2
  • Sebastian Stiller
    • 3
  • Dorothea Wagner
    • 4
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.Institute of MathematicsTechnische Universität BerlinBerlinGermany
  3. 3.Technische Universität BraunschweigBraunschweigGermany
  4. 4.Institute of Theoretical InformaticsKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Bibliographic information