Integral Methods in Science and Engineering

Theoretical and Computational Advances

  • Christian Constanda
  • Andreas Kirsch

Table of contents

  1. Front Matter
    Pages i-xxvii
  2. C. E. Athanasiadis, D. Natroshvili, V. Sevroglou, I. G. Stratis
    Pages 29-41
  3. J. B. Bardaji, B. E. J. Bodmann, M. T. Vilhena, A. C. M. Alvim
    Pages 43-55
  4. J. R. G. Braga, V. C. Gomes, E. H. Shiguemori, H. F. C. Velho, A. Plaza, J. Plaza
    Pages 69-79
  5. D. Buoso, L. Provenzano
    Pages 81-89
  6. D. Buske, M. T. B. Vilhena, B. E. J. Bodmann, R. S. Quadros, T. Tirabassi
    Pages 99-110
  7. G. A. Degrazia, S. Maldaner, C. P. Ferreira, V. C. Silveira, U. Rizza, V. S. Moreira et al.
    Pages 155-161
  8. M. Er, R. Mohan, E. Pereyra, O. Shoham, G. Kouba, C. Avila
    Pages 177-194
  9. C. Etchegaray, B. Grec, B. Maury, N. Meunier, L. Navoret
    Pages 195-207
  10. J. C. L. Fernandes, F. Oliveira, B. E. J. Bodmann, M. T. B. Vilhena
    Pages 209-221
  11. J. C. L. Fernandes, S. Dulla, P. Ravetto, M. T. B. Vilhena
    Pages 223-234

About these proceedings


This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.


boundary integral equations deformable structures fluid mechanics integral equations integral methods numerical methods

Editors and affiliations

  • Christian Constanda
    • 1
  • Andreas Kirsch
    • 2
  1. 1.Department of MathematicsThe University of Tulsa, Department of MathematicsOklahomaUSA
  2. 2.Department of MathematicsKarlsruhe Institute of Technology, Department of MathematicsKarlsruheGermany

Bibliographic information

  • DOI
  • Copyright Information Springer International Publishing Switzerland 2015
  • Publisher Name Birkhäuser, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-16726-8
  • Online ISBN 978-3-319-16727-5
  • About this book