Computer Algebra in Scientific Computing

16th International Workshop, CASC 2014, Warsaw, Poland, September 8-12, 2014. Proceedings

  • Vladimir P. Gerdt
  • Wolfram Koepf
  • Werner M. Seiler
  • Evgenii V. Vorozhtsov
Conference proceedings CASC 2014
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8660)

Table of contents

  1. Front Matter
  2. Rudolf Berghammer
    Pages 13-27
  3. François Boulier, Anja Korporal, François Lemaire, Wilfrid Perruquetti, Adrien Poteaux, Rosane Ushirobira
    Pages 28-43
  4. Russell Bradford, Changbo Chen, James H. Davenport, Matthew England, Marc Moreno Maza, David Wilson
    Pages 44-58
  5. Jorge Caravantes, Mario Fioravanti, Laureano Gonzalez–Vega, Ioana Necula
    Pages 59-73
  6. Georg Grasegger, Alberto Lastra, J. Rafael Sendra, Franz Winkler
    Pages 111-120
  7. Aurelien Grolet, Philippe Malbos, Fabrice Thouverez
    Pages 121-137
  8. Alexander A. Gusev, Ochbadrakh Chuluunbaatar, Sergue I. Vinitsky, Vladimir L. Derbov, Andrzej Góźdź, Luong Le Hai et al.
    Pages 138-154
  9. Sardar Anisul Haque, Farnam Mansouri, Marc Moreno Maza
    Pages 171-185
  10. Amir Hashemi, Michael Schweinfurter, Werner M. Seiler
    Pages 186-201
  11. Jonathan D. Hauenstein, Victor Y. Pan, Agnes Szanto
    Pages 202-217
  12. Konstantin Korovin, Marek Kos̆ta, Thomas Sturm
    Pages 256-270

About these proceedings

Introduction

This book constitutes the proceedings of the 16th International Workshop on Computer Algebra in Scientific Computing, CASC 2014, held in Warsaw, Poland, in September 2014. The 33 full papers presented were carefully reviewed and selected for inclusion in this book.
The papers address issues such as Studies in polynomial algebra are represented by contributions devoted to factoring sparse bivariate polynomials using the priority queue, the construction of irreducible polynomials by using the Newton index, real polynomial root finding by means of matrix and polynomial iterations, application of the eigenvalue method with symmetry for solving polynomial systems arising in the vibration analysis of mechanical structures with symmetry properties, application of Gröbner systems for computing the (absolute) reduction number of polynomial ideals, the application of cylindrical algebraic decomposition for solving the quantifier elimination problems, certification of approximate roots of overdetermined and singular polynomial systems via the recovery of an exact rational univariate representation from approximate numerical data, new parallel algorithms for operations on univariate polynomials (multi-point evaluation, interpolation) based on subproduct tree techniques.

Keywords

applications to natural sciences and engineering automated reasoning complexity complexity computability computer algebra systems design and analysis of algorithms differential equations holonomic functions logic long integers mathematical software modeling and simulation numerical analyis parallel algorithms polynomial factorization quantum computation theory symbolic and algebraic algorithms

Editors and affiliations

  • Vladimir P. Gerdt
    • 1
  • Wolfram Koepf
    • 2
  • Werner M. Seiler
    • 3
  • Evgenii V. Vorozhtsov
    • 4
  1. 1.Laboratory of Information Technologies (LIT)Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institut für MathematikUniversität KasselKasselGermany
  3. 3.Institut für MathematikUniversität KasselKasselGermany
  4. 4.Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-10515-4
  • Copyright Information Springer International Publishing Switzerland 2014
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-319-10514-7
  • Online ISBN 978-3-319-10515-4
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • About this book