Geometry of Manifolds with Non-negative Sectional Curvature

Editors: Rafael Herrera, Luis Hernández-Lamoneda

  • Owen Dearricott
  • Fernando Galaz-García
  • Lee Kennard
  • Catherine Searle
  • Gregor Weingart
  • Wolfgang Ziller

Part of the Lecture Notes in Mathematics book series (LNM, volume 2110)

Table of contents

About this book


Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.


53C21;57S25;53C23;58A15;58A20.22Exx;22Fxx,53Cxx; Cohomogeneity one action Lie group action Non-negative sectional curvature Riemannian manifolds n-Sasakian manifolds

Authors and affiliations

  • Owen Dearricott
    • 1
  • Fernando Galaz-García
    • 2
  • Lee Kennard
    • 3
  • Catherine Searle
    • 4
  • Gregor Weingart
    • 5
  • Wolfgang Ziller
    • 6
  1. 1.Centro de Investigación en MatemáticasGuanajuatoMexico
  2. 2.Westfälische Wilhelms-UniversitätMünsterGermany
  3. 3.University of CaliforniaSanta BarbaraUSA
  4. 4.Department of MathematicsOregon State UniversityCorvallisUSA
  5. 5.Instituto de Matemáticas - CuernavacaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  6. 6.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Bibliographic information

  • DOI
  • Copyright Information Springer International Publishing Switzerland 2014
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-06372-0
  • Online ISBN 978-3-319-06373-7
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book