Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

FVCA 7, Berlin, June 2014

  • Jürgen Fuhrmann
  • Mario Ohlberger
  • Christian Rohde
Conference proceedings

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 78)

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Elliptic and Parabolic Problems

    1. Front Matter
      Pages 469-469
    2. Philippe Angot, Thomas Auphan, Olivier Guès
      Pages 471-478
    3. Martin Balažovjech, Peter Frolkovič, Richard Frolkovič, Karol Mikula
      Pages 479-487
    4. Marianne Bessemoulin-Chatard, Mazen Saad
      Pages 497-505
    5. Konstantin Brenner, Mayya Groza, Cindy Guichard, Roland Masson
      Pages 507-515
    6. Konstantin Brenner, Roland Masson, Laurent Trenty, Yumeng Zhang
      Pages 517-525
    7. Konstantin Brenner, Mayya Groza, Cindy Guichard, Gilles Lebeau, Roland Masson
      Pages 527-535
    8. Konstantin Brenner, Danielle Hilhorst, Huy Cuong Vu Do
      Pages 537-545
    9. Claire Chainais-Hillairet, Pierre-Louis Colin, Ingrid Lacroix-Violet
      Pages 547-555
    10. Robert Eymard, Cindy Guichard, Roland Masson
      Pages 557-565
    11. Miloslav Feistauer, Martin Hadrava, Jaromír Horáček, Adam Kosík
      Pages 567-575
    12. Martin Ferrand, Jacques Fontaine, Ophélie Angelini
      Pages 577-585
    13. Oleg Iliev, Ralf Kirsch, Zahra Lakdawala, Galina Printsypar
      Pages 647-654
    14. Ivan Kapyrin, Kirill Nikitin, Kirill Terekhov, Yuri Vassilevski
      Pages 655-663
    15. Radka Keslerová, Karel Kozel, David Trdlička
      Pages 665-673
    16. Zuzana Krivá, Angela Handlovičová, Karol Mikula
      Pages 675-683
    17. Karol Mikula, Mariana Remešíková
      Pages 685-693
    18. Mario Ohlberger, Stephan Rave, Sebastian Schmidt, Shiquan Zhang
      Pages 695-702
    19. D. Vidović, M. Dotlić, B. Pokorni, M. Pušić, M. Dimkić
      Pages 723-730
  3. Hyperbolic Problems

    1. Front Matter
      Pages 739-739
    2. Rajaa Abdellaoui, Fayssal Benkhaldoun, Imad Elmahi, Mohammed Seaid
      Pages 741-748
    3. Bruno Audebert, Jean-Marc Hérard, Xavier Martin, Ouardia Touazi
      Pages 769-777
    4. P. Bacigaluppi, M. Ricchiuto, P. Bonneton
      Pages 779-790
    5. Michal Beneš, Pavel Strachota, Radek Máca, Vladimír Havlena, Jan Mach
      Pages 791-799
    6. Florian Bernard, Angelo Iollo, Gabriella Puppo
      Pages 801-808
    7. Christophe Berthon, Matthieu de Leffe, Victor Michel-Dansac
      Pages 817-825
    8. Fabien Crouzet, Frédéric Daude, Pascal Galon, Jean-Marc Hérard, Olivier Hurisse, Yujie Liu
      Pages 837-845
    9. Jiří Fürst, Jaroslav Fořt, Jan Halama, Jiří Holman, Jan Karel, Vladimír Prokop et al.
      Pages 847-855
    10. Jean-Marc Hérard, Olivier Hurisse, Antoine Morente, Khaled Saleh
      Pages 857-864
    11. François James, Hélène Mathis
      Pages 865-872
    12. Alaa Armiti-Juber, Christian Rohde
      Pages 873-881
    13. Th. von Larcher, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov et al.
      Pages 883-890

About these proceedings


The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.


65-06, 65Mxx, 65Nxx, 76xx, 78xx, 85-08, 86-08, 92-08 compatible discretizations convergence analysis finite volume methods numerical methods partial differential equations

Editors and affiliations

  • Jürgen Fuhrmann
    • 1
  • Mario Ohlberger
    • 2
  • Christian Rohde
    • 3
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Institute Comp. Applied MathematicsUniversity of Münster Center for Nonlinear Sciences (CeNoS )MünsterGermany
  3. 3.Inst. Appl. Analysis and Num. SimulationUniversity of StuttgartStuttgartGermany

Bibliographic information