Polytopes — Combinatorics and Computation

  • Gil Kalai
  • Günter M. Ziegler

Part of the DMV Seminar book series (OWS, volume 29)

Table of contents

  1. Front Matter
    Pages i-vi
  2. Günter M. Ziegler
    Pages 1-41
  3. Ewgenij Gawrilow, Michael Joswig
    Pages 43-73
  4. Gil Kalai, Peter Kleinschmidt, Günter Meisinger
    Pages 75-103
  5. Andrea Höppner, Günter M. Ziegler
    Pages 105-110
  6. Benno Büeler, Andreas Enge, Komei Fukuda
    Pages 131-154
  7. Hans Achatz, Peter Kleinschmidt
    Pages 155-165

About this book


Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.


Diskrete Mathematik Geometrie Optimisierung addition boundary element method combinatorial optimization computational geometry computer extrema graph implementation linear optimization optimization programming scientific computing

Editors and affiliations

  • Gil Kalai
    • 1
  • Günter M. Ziegler
    • 2
  1. 1.Institute of Mathematics and Computer ScienceThe Hebrew UniversityJerusalemIsrael
  2. 2.Fachbereich Mathematik MA 7-1Technische Universität BerlinBerlinGermany

Bibliographic information