Advertisement

Lineare Algebra und Analytische Geometrie

Ein Lehrbuch für Physiker und Mathematiker

  • Theodor Bröcker

Part of the Grundstudium Mathematik book series (GM)

Table of contents

  1. Front Matter
    Pages i-x
  2. Theodor Bröcker
    Pages 1-19
  3. Theodor Bröcker
    Pages 21-54
  4. Theodor Bröcker
    Pages 55-81
  5. Theodor Bröcker
    Pages 83-108
  6. Theodor Bröcker
    Pages 109-140
  7. Theodor Bröcker
    Pages 141-162
  8. Theodor Bröcker
    Pages 163-207
  9. Theodor Bröcker
    Pages 209-231
  10. Theodor Bröcker
    Pages 233-267
  11. Theodor Bröcker
    Pages 269-306
  12. Theodor Bröcker
    Pages 307-353
  13. Back Matter
    Pages 355-366

About this book

Introduction

Die ersten fünf Kapitel dieses neuen Lehrbuchs entsprechen nach Inhalt und Methode dem Standard einer modernen Vorlesung über Lineare Algebra. Der Leser gelangt aber nachher direkt zu den grundlegenden Aussagen der Linearen Algebra bei Ringen. Die Darstellung ist von Anfang an anschaulich und geometrisch, sie schreitet behutsam voran in der Abstraktion. In dem Kapitel über projektive Geometrie findet man im reellen und komplexen Fall Diskussionen der projektiven Räume und Quadriken, die inhaltsreich und wesentlich für die heutige Geometrie sind. Physiker finden eine Diskussion von Quaternionen, Pauli-Matrizen, orthogonalen und unitären Gruppen sowie der Lorentzgruppe und ihrer Spinordarstellung. Die Lorentzgruppe wird durch ein Kausalitätsprinzip charakterisiert. Die topologische Beschreibung der Quadriken und die Charakterisierung der Lorentzgruppe finden sich in anderen Lehrbüchern nicht, die Erklärung der Lie-Theorie der niederdimensionalen klassischen Gruppen nur in höheren Lehrbüchern. Die wichtigen und schönen klassischen Formeln für symmetrische Polynome im Zusammenhang mit Identitäten für Endomorphismen stehen kaum anderswo so geschickt beieinander.

Keywords

Algebra Eigenwert Funktor Geometrie Homomorphismus Interpolation Kategorie Matrizen Quaternionen Skalarprodukt Vektoren Vektorräume lineare Abbildung lineare Algebra lineare Gleichungssysteme

Authors and affiliations

  • Theodor Bröcker
    • 1
  1. 1.NWF I - MathematikUniversität RegensburgRegensburgDeutschland

Bibliographic information