Advertisement

Compactifying Moduli Spaces

  • Paul Hacking
  • Radu Laza
  • Dragos Oprea
  • Gilberto Bini
  • Martí Lahoz
  • Emanuele Macrí
  • Paolo Stellari

Part of the Advanced Courses in Mathematics - CRM Barcelona book series (ACMBIRK)

Table of contents

About this book

Introduction

This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated.

Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps.

Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.

Keywords

Compactifications Cyclic Quotients Singularities Geometric Invariant Theory Moduli Spaces Stable Quotients

Authors and affiliations

  • Paul Hacking
    • 1
  • Radu Laza
    • 2
  • Dragos Oprea
    • 3
  1. 1.Department of MathematicsUniversity of MassachusettsAmherstUSA
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  3. 3.Department of MathematicsUniversity of CaliforniaLa JollaUSA

Editors and affiliations

  • Gilberto Bini
    • 1
  • Martí Lahoz
    • 2
  • Emanuele Macrí
    • 3
  • Paolo Stellari
    • 4
  1. 1.Università degli Studi di MilanoMilanoItaly
  2. 2.Université Paris DiderotParisFrance
  3. 3.Department of MathematicsNortheastern UniversityBostonUSA
  4. 4.Università degli Studi di MilanoMilanoItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-0348-0921-4
  • Copyright Information Springer Basel 2016
  • Publisher Name Birkhäuser, Basel
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-0348-0920-7
  • Online ISBN 978-3-0348-0921-4
  • Series Print ISSN 2297-0304
  • Series Online ISSN 2297-0312
  • Buy this book on publisher's site