Semiconductor Nanophotonics

Materials, Models, and Devices

  • Michael Kneissl
  • Andreas Knorr
  • Stephan Reitzenstein
  • Axel Hoffmann

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 194)

Table of contents

  1. Front Matter
    Pages i-xxiii
  2. N. Owschimikow, B. Herzog, B. Lingnau, K. Lüdge, A. Lenz, H. Eisele et al.
    Pages 13-51
  3. U. W. Pohl, A. Strittmatter, A. Schliwa, M. Lehmann, T. Niermann, T. Heindel et al.
    Pages 53-90
  4. M. Kolarczik, F. Böhm, U. Woggon, N. Owschimikow, A. Pimenov, M. Wolfrum et al.
    Pages 91-133
  5. Frank Bertram, Christoph Berger, Jürgen Christen, Holger Eisele, Ludwig A. Th. Greif, Axel Hoffmann et al.
    Pages 135-201
  6. Sandra C. Kuhn, Alexander Carmele, Andreas Knorr, Marten Richter
    Pages 203-240
  7. Markus Kantner, Theresa Höhne, Thomas Koprucki, Sven Burger, Hans-Jürgen Wünsche, Frank Schmidt et al.
    Pages 241-283
  8. Sven Rodt, Philipp-Immanuel Schneider, Lin Zschiedrich, Tobias Heindel, Samir Bounouar, Markus Kantner et al.
    Pages 285-359
  9. Oliver Benson, Tim Kroh, Chris Müller, Jasper Rödiger, Nicolas Perlot, Ronald Freund
    Pages 361-390
  10. Pascal M. Seiler, Bernd Tillack, Lars Zimmermann
    Pages 427-451
  11. G. Schmidt, C. Berger, A. Dadgar, F. Bertram, P. Veit, S. Metzner et al.
    Pages 453-504
  12. Tim Wernicke, Luca Sulmoni, Christian Kuhn, Günther Tränkle, Markus Weyers, Michael Kneissl
    Pages 505-548
  13. Back Matter
    Pages 549-556

About this book


This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing. 

The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.


nanostructured semiconductors nanoscale photonic devices epitaxial growth of quantum dots energy efficient VCSEL high-speed VCSEL self-consistent solution of Maxwell's equations optoelectronic devices electrically driven quantum key systems UV laser diode for medical applications

Editors and affiliations

  • Michael Kneissl
    • 1
  • Andreas Knorr
    • 2
  • Stephan Reitzenstein
    • 3
  • Axel Hoffmann
    • 4
  1. 1.Institute of Solid State PhysicsTechnische Universität BerlinBerlinGermany
  2. 2.Institute of Theoretical PhysicsTechnische Universität BerlinBerlinGermany
  3. 3.Institute of Solid State PhysicsTechnische Universität BerlinBerlinGermany
  4. 4.Institute of Solid State PhysicsTechnische Universität BerlinBerlinGermany

Bibliographic information

  • DOI
  • Copyright Information Springer Nature Switzerland AG 2020
  • Publisher Name Springer, Cham
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-030-35655-2
  • Online ISBN 978-3-030-35656-9
  • Series Print ISSN 0171-1873
  • Series Online ISSN 2197-4179
  • Buy this book on publisher's site